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Abstract. It is shown how the inflationary Universe scenario
can be implemented in a special class of supersymmetric models
without any unnatural fine-tuning of parameters. The special
class of models utilizes O'Raifeartaigh-type supersymmetric
breaking and employs the Witten 'reverse hierarchy" scheme.

A prime test example, the Dimopoulos-Raby 'geometric hierarchy"
model, has been studied in collaboration with A. Albrecht, W.
Fischler, S. Dimopoulos, E. Kolb & S. Raby and some results of
that study are presented. Implications of this new kind of in-
flationary model for our understanding of the fluctuations
necessary for galaxy formation, the initial cosmological singu-
larity and the very large scale structure of the Universe are
also briefly discussed.

Recently, it has been shown by Linde (1982a), Albrecht and
Steinhardt (1982a,b) that the Guth (1981) inflationary scenario can be suc-
cessfully implemented in grand unified theories (GUTs) in which the GUT
symmetry is broken through radiative corrections to the tree effective po-
tential — so-called '"Coleman-Weinberg (C-W) models” (Coleman and Weinberg,
1973). Unlike the case for ordinary GUTS, (Guth and Weinberg, 1982), the
C-W models result in enormous exponential expansion of the Universe during
the GUT phase transition without preventing the phase transition frombeing
completed and from homogenizing the Universe. The key conceptual differ-
ence is the following: For ordinary GUT inflationary scenarios, the expo-
nential expansion of the Universe occurs while the Universe is supercoaling
in a metastable (SU(5)) phase; the metastable regions expand so rapidly that
bubble nucleation (tunneling) cannot occur rapidly enough for the phase
transition to the stable phase to be completed. In C-W GUTs, the major
inflation occurs after fluctuations have driven different regions of the
Universe a small distance away from the SU(5) symmetric state towards dif-
ferent spontaneous symmetry breaking (SSB) minima; the interiors of the
fluctuation regions have a small Higgs expectation value which evolves in-

evitably towards a stable minimum with large expectation value (due to the

potential), but because of the special nature of the C-W potential the
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evolution occurs very slowly (sometimes referred to as the "slow roll-oyey"
of the scalar field) (Steinhardt, 1982). During the slow roll-over the
energy density in the fluctuation region is nearly that of the sym-
metric phase (because the Higgs expectation value is small) and each fly
tuation region begins to expand to a size many orders of magnitude times

the size of the observable Universe today. Because the expansion occurs

in the evolving stable phase, rather than the metastable phase, the prob-

lem of completion of the phase transition that occurred in Guth's original
infla\‘.:ionary scenario is obviated. Therefore, the C-W models provide a
possible explanation. of the cosmological homogeneity, isotropy, flatness
and monopole problems (Linde, 1982a; Albrecht & Steinhardt, 1982a, Guth,
1981) and, it has been more recently shown, a natural solution to the prob-
lem of baryon asymmetry (Albrecht, et al., 1982a; Abbott, et al., 1982;
Dolgov and Linde, 1982) and the problem of providing the fluctuations nec-
cessary for galaxy foma;:ion (Chibisov and Mukhanov, 1981; Hawking, 1982;
Bardeen, et al., 1982; Starobinski, 1982; Guth and Pi, 1982).

The one drawback to the C-W inflationary scenario is that it
requires the fine-tuning of the effective mass parameter of the theory in
the de Sitter phase to a value close to zero (see, for example, Albrecht
and Steinhardt, 1982b). It can be argued that such a model is special and
that the setting of a parameter to zero is not so unnatural. However,
since there is no unbroken symmetry that can result in such a finely tuned
condition, such arguments are suspect. The C-W models provide a possible

but unlikely support for the inflationary scenario.

In this paper I plan to outline a first attempt at finding a
theory which leads to inflation without fine-tuning of parameters. The
models I will discuss utilize the lesson learned from the C-W models --
inflation must occur in evolving stable phase -- but the inflation will
occur for a wide and natural choice of all parameters.

Models which possess supersymmetry appear to be obvious candi-
dates for at least two reasons. Firstly, supersymmetry is supposed to-
solve the unnatural hierarchy problem; shouldn't the same notion solve the
unnatural inflation problem? Secondly, supersymmetric models are known t0
lead to radiative symmetry breaking without fine-tuning of parameters. (1
use the term 'radiative symmetry breaking" rather than "Coleman-Weinberg"
because the latter term has come to be associated with potentials that aré

very flat for small values of the scalar field expectation value. Both
terms refer to the breaking of symmetry through one-loop radiative
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corrections to the effective potential, but in the supersymmetry case this
does not naturally lead to a potential that is flat near the region of
small scalar field.)

The' natural radiative symmetry breaking occurs especially in
supersymmetry models with O'Raifeartaigh (O'R) symmetry breaking
(0'Raifeartaigh, 1975). For example, consider a model with three left-
handed chiral fields, A, X, Y with a superpotential:

W= >\1XA2 + MY @w? - vy . (1)

The scalar potential in tree approximation is given by:
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vhere i runs over the various fields and the same symbol has been used for
the superfieids and their scalar components. There is no state with V =0
so supersymmetry is (O'R) spontaneously broken with a global minimum at
<A = AZM/()\i + )\‘;:) 1/2. The value of <X> and <Y> remain undetermined at”

tree level, only constrained by

}\2
x| = - 2 <v> . (3)

i

Thus, the mass of the A field, given by ~2 }\1<X> (for large X), can be
arbitrarily large. This kind of degeneracy is natural to O'R breaking
since to break supersymmetry and have V # 0 at the minimum of the poten-
tial, there must be an algebraic inconsistency in setting all the Fi's to
zero; to obtain inconsistency for one field expectation value (in this
case the A field) at least one other field expectation value usually re-
mains undetermined. .

The degeneracy is broken by one-loop corrections to the effec-
tive potential - just the radiative symmetry breaking discovered by
Coleman and Weinberg (1973):

M2

F
=3 ill—)z—Mi“(cp) o — (4)

\Y
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where U is a renormalization mass and (-1)  is +1 (-1) for bosons (fer-

mions). For X > M, the only X-dependent masses come from A and its super-

symmetric partners. Their masses are such that the one-loop corrections

are given by (Witten, 1981; Huq, 1976):

V1-1oop u (5)

where o is a function of the scalar coupling constants. This form is very

special because, unlike C-W GUT models, the only X-dependence appears in-

side the logarithm; this crucial behavior occurs because of special can-

cellations that occur in Eq. (4), as a remnant of the broken supersymmetry,
The net result for the pure scalar theory is that the state with X =
is stabilized. For a gauge theory, the analog of Eq. (5) is (Witten, 1981)

S il 25 X
V1-loop = (@' - BgOHM In J_ﬁl (6)

where a' and £ are functions of the scalar couplings and g is the gauge
coupling constant. If (o' - Bgz) < 0, the state with <X> = (0 is destabi-
lized compared to the state with large <X>. (NOTE: The potential has
only been determined for X > M for which it is independent of parameters;
the shape of the potential for X < M depends upon the choice of parameters
and the <X> = (0 state may be metastable or unstable). At largeX(‘*Mel'b),
the potential appears to become negative, which is impossible for a glo-
bally supersymmetric theory. In fact, asymptotic freedom forces g to de-
crease with large X and the sign of the logarithm term changes sign; thus
V develops a stable minimum at this large value of X. Beginning with a
single mass scale, M, we have generated a muéh larger mass scale. Witten
(1981) hoped to be able to use this idea to generate the GUT scale from a
theory in which the only weak scale has been introduced as a fundamental
mass. Because usual hierarchy solutions attempt to generate the weak scale
from a fundamental GUT scale, this sort of model has come to be known as
a '""reverse hierarchy" model.

Dimopoulos and Raby (1982) attempted to extend this idea to
produce both the weak and GUT scales through radiative corrections to a
theory with only a single fundamental intermediate scale. In their model
particles appear with masses of order M = 10]'9 GeV = MI el/a;

-1/a 5 12 GUT

Mw = MI e = 10° GeV; and MI = 10 GeV. (The model is referred to as
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the "geometric hierarchy' model because MI ~ MGUT Mw) . The theory has
pany interesting properties that are discussed by Dimopoulos and Raby
(1982) - For the purpose of this paper, the most important feature is that
the effective zero temperature scalar potential for the X field in the

range MI <X < MGUT can be written (in analogy with the toy model discuss-

ed above):
4 4 IXl
' =c, M - ¢ 1n (7)
off = &) Mp ~ €5 My Mo
2.2, 2 2 _ 2 2./ 2
where ¢, = ()xl )\2 /()\1 + 30 )\2 ), c, = cl)\z (29 Al 50 g7)/

(801r2()\22 + )\12/30)), and the )\i are the scalar coupling constants. (For
the purpose of illustration, we set clMIA, the constant term in the effec-
tive potential, at the value determined by global supersymmetry. The ap-
propriate adjustment of the constant term, which sets the value of the
cosmological constant, is determined by setting V evaluated at the global
pinimum to zero. This point is examined more closely in the Addendum.)
Once again it must be emphasized that there has been no special choice of
parameters to obtain this form for the potential. (In a recent preprint,
Hall & Hinchcliffe (1982) have shown that, without tuning the values of
-the couplings, the coefficient of the logarithm term in Eq. (7) according
to the renormalization group equations changes sign when X ~ 103 MI or
less for the simplest models, so that MG/MI is much less than supposed by
Dimopoulos & Raby (1982). This tuning may be avoided by adding additiomal
terms to the superpotential to change the renormalization group equations.
In general, the effect they note can be made insignificant, if o is some-
vhat smaller (a~1/30) than they assume.) The shape of the potential is
shown in Fig. 1, where nothing has been assumed for the shape of the
potential for X > M. We will assume that a transition takes place in at

least some region (of size < M _l) of the Universe which takes us from a

~ I

state with X = 0 to a state with X < M_; eventually, due to the potential,

I
the state evolves to a value of <X> of order MI and a value of <XI> of
order MIZ; these will form the initial conditions for our amnalysis. The
insensitivity of our results to the prehistory of the region is, of

course, what makes this scenario natural and attractive.

I will now outline two means by which tremendous inflation can
be produced through the subsequent evolution of the X field. These

methods have been studied
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The zero-temperature effective potential for the
geometric hierarchy model.

Fig. 1.
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in collaboration with A. Albrecht, S. Dimopoulos, E Kolb, W. Fischler and

S. Raby. A paper discussing our results associated with both methods will

appear in a forthcoming publication (Albrecht, et al., 1982b).

Method I: The equation for the evolution of the X-field in the expanding

Universe is given by:

X + 30X 4+ V'(X) = 0 (8)

where V'(X) = -c2M14/X; H is the Hubble constant:

2 §E.YS§1,, Mp = Planck mass = 1019 GeV,

H
- M
P

(9)

which gives rise to an effective damping term in Eq. (8). If one writes

V'(X) = _mZ(X)X where
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4
D20 = 5 T
-—;;;—-— , (10)

the damping term dominates Eq. (8) provided that

C
bm(X) << 9HZ or X% >> —2— M2 . (11)
61Tc1 P

Suppose that the domination of the damping term occurs for some large

value, X = Xo which is = .1 MGUT = 1018 GeV. According to Egs. (9, 10,

> ; 2y WL T0 LI
1 2 50 c, If we assume that Al Kz A 1, we find

> 27000 c, (for g small) so that Eq. (11) can be

11), this requires c

from Eq. (6) that cl

satisfied without fine-tuning of parameters.(see Addendum). If the damp-

ing term dominates, Eq. (8) is solved approximately by:

. _ 4
X c, M /3HX (12)

or

Pt A . (13)

Suppose that the evolution of X results in

S e 2
2 Mour ~ %o

AX2

where we assume Eq. (7) becomes unreliable for M ~ M UT/e (the factor of

G
1/e is chosen just for the purpose of illustration; general choice of
parameters is discussed by Albrecht, et al., 1982b). Then, the roll-over

time, tr’ is given approximately by

_ 3 GUT
At:r = ; H . (14)

The scale parameter expands by a factor (Eqs. 9, 14):

R(t) C

r 4m 1
. 5 = X = (15)
R(to) exp (HAtr) exp ez C2
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so that for ¢y > 50 Cos 8 fluctuation region of order MI_l ((1012GeV)-l
= 7 x 10_26cm) expands to a size of order 10]'l cm, much greater than the
size of our observed Universe (*'103 cm) at the time of the completion of
the transition. The inflation occurs near the very end of the logarithmic
portion of the potential where X ~ MGUT and the degree of inflation is cop-
trolled by the ratio c1/c2. The fact that MGUT is of order the Planck masg
(Dimopoulos and Raby, 1982) in the geometric hierarchy model is unfortun-

ate, but it is not required for the inflation to occur. Provided that

. -2
1 S
c1/ c, is sufficiently large, the value of MGUT ¢an be reduced to 10 MPlanck

where quantum gravitational effects are not bothersome. Thus, as
a genefic potential, Eq. (7) results in inflation without any special tun-
ing of the parameters of the theory and without any detailed dependence on
the shape of the potential for X < MI.
Method II: For the second method, the inflation depends on radiation damp-
ing due to the particle production resulting from the time variation of the
X field. In Albrecht, et al. (1982a), the time variation of the Higgs
field was studied in relation to the problem of reheating at the end of the
inflationary scenario. Suppose, as in that case, one postulates that the
time varying field radiates an energy density per unit time given by

§ ~ ax)? x4 (16)
where d is arbitrarily chosen. As a first test, suppose that the X field
in our case has couplings such that § = a X ).(2; the reasonableness of this
guess will be discussed at the end of the analysis. The equation of motion

for the X field is given by
X+ 3HX + aXX + V' (X) = 0 (17)

vhere the third term is the effect due to 6. For X > MI’ the §-term domin-

ates the time evolution equation. The approximate solution to Eq. (17) 1is

given by
X = c, Ml{/a}{2 (18)
or
At = 3 a 4 AX3 . (19)
cy, M

21
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1f X rolls from X ~ MI to X ~ MGUT’ the rollover time is given by

3
GUT

4

'Atr =aM /c2 MI " (20)

1f the Hubble constant, H, is given by

4
M
2 8m ‘11
H. sz 3 2 (21)
M
P
we find that the scale factor after the inflation is given by
R(t_) 8T c. a I 12
— A _ 1 GUT 10 ;
R(t ) - exp(HAt ) = exp 3 7| e . (22)
- c, Mp M

h— -

The resulting expansion is enormous, more than enough to solve the cosmo-

logical puzzles if we begin with a region with an initial size ~MI-]'.

Two major warnings should be given concerning Method II, how-
ever. Firstly, the results depend crucially on d in Eq. (16) having a
value 1 < d < 2.5; this was not the case for the studies of Albrecht et
al., (1982a). The assumption is only reasonable if X couples in a special
way to light (nearly massless) particles. Secondly, it is unlikely that
the X particle couples strongly to anylight particles. Dimopoulos and Raby
have especially designed the model to ensure that X decouples from light
fields as it evolves in order to maintain their weak scale masses. Even
in a more general theory, we expect the particles that couple to X to have
masses of order <X>, which becomes very large. Only in a very special
model could Method II be possible, but the huge inflation effect that re-
sults makes it worth searching for such a model. Perhaps supersymmetry can
permit the X to couple to fields which remain light due to cancellations
coming from coupling to other fields with growing expectation values?

After the inflation must come the reheating, and here may lie
the Achilles heel of this scenario. As X gets large, asymptotic freedom
leads to the decrease of the gauge coupling constant until the sign of the
logarithmic potential in Eq. (7) changes, producing a stable minimum for X

If the curvature of the effective potential (and the mass of the X, MX)

M. 2
remains small C“_I———O, X reaches the minimum and stops (due to the damp-

Mp

ing term); X remains small, so no reheating occurs. However, when X becomes
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large, two other effects become important: (a) perturbation theory breaks
down and (b) gravitational corrections become important. The breakdown of
perturbation is not likely to change the curvature near the minimum. The
minimum occurs where the coefficient of the logarithm changes sign at which
point the values of g and A are still small. The renormalization group,
which should still be reliable at the minimum, suggests that the curvature
at the minimum is only corrected by logarithmic factors, and so remainstoo
small for significant reheating. The gravitational effects can be esti-
mated assuming one wishes to imbed this model in a locally supersymmetric
model (Weinberg, 1982). (I will assume that the Planck mass, Mf, is
treated as a fundamental parameter rather than a dynamically generated
parameter-or else the gravitational corrections would be scaled by <X> and
become important for all X. In order to ensure that gravitational effects
become important only for large X, Mf must be fixed by hand.) It appears
from crude computations a model might be adjusted so that there is suf-
ficient inflation due to the logarithmic tree potential, but also suffi-
cient reheating due to gravitational effects to a temperature 2 10-3 MI
(see Addendum for discussion). (Here the constant term,c1 MI4, that ap-
pears in Eq. (7) is generated dynamically as the difference in energy den-
sity between the potential at X ~ MI and the minimum X ~ Mﬁ (where our
Universe now exists with a cosmological constant of zero).) The details
of our study will be presented in Albrecht, et al. (1982b).

Reheating is crucial because (a) the thermal energy must be
recovered so that the entropy of the Universe rises to a large value to
correspond with observation, and (b) baryon asymmetry must ‘be generated
after the inflation. Since there exist color triplet Higgs mesons in the
theory which have masses ~MI, if the Universe can recover to a temperature
even as small as ~10-3 M, it might be sufficient to ensure that the
usual sort of baryon asymmetry scenarios (in which 1ight.mesons begin from
near-equilibrium and then fall out of equilibrium (Dimopoulos and Raby,
1982; Albrecht, et al., 1982b) succeeds.

Much work is required to check whether the reheating can be

accommodated with the rest of the features of the geometric hierarchy

model, but if it is possible all the successes of C-W inflation are ob-

tained without any fine-tuning of parameters. In fact, it appears that

the problem of producing the inhomogeneities that grow into galaxies is

more easily solved in models for which the inflation occurs when the
scalar expectation value is large compared to H (as occurs naturally in
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this model, but not in the C-W models). The perturbation 8p/p, evaluated
vhen a scale enters its horizon has been shown (e.g. Bardeen et al., 1982)
to be proportional to the value of A¢/¢ during the inflation

epoch, where Ad is the fluctuation about the mean value, 5. In C-W infla-
tion, A¢~H and $<H, so AP/ is large; as a result 8p/p is found to be too
large compared to the value required by astrophysics (~10-4) to explain
galaxy formation without producing a large background microwave anisotropy.
In the supersymmetry model, AX*“H << X during inflation and one can adjust
parameters so that Sp/p ~ 10—4. Furthermore, the de Sitter scalar field
fluctuations (= Hz) which can cause problems with C-W inflation scenarios
(Vilenkin and Ford, 1982; Linde, 1982b) can be shown to be insignificant
in this case, again because X is large compared to H in the inflationary
phase (Albrecht et al. 1982b; Vilenkin, private communication).

As an amusement, it is interesting to speculate how the be-
havior of the effective potential for X < My can affect the inflationary
cosmology. The three possibilities are shown in Fig. 1, corresponding to
(1) negative, (2) zero (analog of C-W) or (3) positive curvature of the
potential near X = 0. As has been emphasized, which case is obtained de-
pends upon the choice of parameters and inflation occurs in any case;
therefore, which case one obtains has no effect on the predictions for
scales of the size of our observable Universe. However, there can be dif-
ferent predictions for scales much larger (by a factor of 1030 or more)
than the size of our observed Universe. Since such predictions are in
principle unable to be tested by any human (protonic) observer, I call this
branch of cosmology "hetaphysical cosmology' or meta-cosmology for short.
Each of the three cases shown in Fig. 1 can lead to a distinctive meta-
cosmology:

(1) Spinodal Metacosmology - The potential has negative curvature at

X =0. At some finite temperature, the X = 0 phase becomes unstable and
fluctuations drive different regions towards different SSB minima; the
phenomenon of dividing the whole Universe (no region remains in the meta-
stable phase) into different developing phase regions - fluctuation re-
gions - is analogous to spinodal decomposition in condensed matter physics
(Steinhardt, 1982). The different SSB minima are related by continuous

or discrete symmetries. When different regions come together for which
the phases contained therein differ by a discrete (continuous) symmetry,

one expects domain walls (monopoles) to be formed. Of course the inflation
Pushes these topological defects to distances beyond which we can ever hope
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to observe and before we could even reach them, the domain walls collapse
gravitationally (Hawking, private communication). We conclude for the
Spinodal Universe, that even though the Universe near us is very nearly
homogeneous and isotropic, the Universe far away from us (near the edges
of fluctuation regions) might be quite different. This is a startling
possibility from a philosophical point of view.

(2) Single Universe Metacosmology: With special fine-tuning of parameters,

the effective potential for the supersymmetry case can be made to be flat
(in the C-W GUT sense, curvature SHZ) near the origin. In this case, the
Hawking-Moss (1982) analysis suggests that the universe rolls all at once
into the same SSB phase. There are no monopoles or domain walls formed as
topological defects in the transition because there is only one 'fluctua-
tion region". The total Universe is uniform, homogeneous and isotropic.
This metacosmology yields the simplest picture of our Universe.

(3) Regenerative Meta-Cosmology: If parameters are chosen so that there

remains a barrier with a curvature > H2 at X ®* 0, the X = 0 phase remains
metastable even as T approaches zero. Because Z = 0 is metastable, rather
than stable, quantum fluctuations of the type studied by Coleman and
Deluccia (1980) - analogs of flat space bubbles - are produced rarely in
the metastable Universe. Their interiors contain evolving stable phase.
These bubbles occupy only a small fraction of the total Universe, most of
which reméips in the metastable phase.and continues to expand forever.

The expectation value of X begins < MI and evolves along the potential.
The resulting bubble inflates to a size much larger than our observed Uni-
verse. The interior is perfectly Robertson-Walker. Observers inside the
bubble can never observe the bubble wall because the bubble expands at
nearly the speed of light. Bubbles are produced so rarely that they almost
never collide. When a new bubble is formed, it regenerates a new Universe
which can never contact our own. New Universes are regenerated forever
because the Universe is only percolated (fractally) as time approaches
infinity. (See Albrecht, et al., 1982b for more elaborate discussions.)
The regenerative scenario is probably the most surprising and radical cos-
mological possibility.

Linde (1982c) has noted (in response to this talk) that a re-
generative metacosmology can avoid the usual problem of the initial cos-
mological singularity. In almost any other cosmology which has an early
epoéh in which the Universe was very hot, extrapolating backwards in time

leads to an unavoidable space-time singularity; this naturally makes
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physicists uncomfortable. In the regenerative metacosmology the Universe

could begin (t = 0) in the metastable phase at T = 0 (actually T )s

Hawking
The metastable region never has to be hot so there need never be an
initial singularity. The Universe even today could be mainly in this
phase, with only a few rare bubbles in which true thermal matter and our-
selves can exist.

Why should the Universe have begun in such a metastable phase?
Perhaps because the X = 0 phase is a state of highest symmetry. It should
also be noted that there remains a problem if time is continued for t < 0.
A full de Sitter spacetime has a contraction phase for t < 0 and an expan-
sion phase for t > 0. If the Universe began in a metastable symmetric
phase with T = 0 and t = -», it would complete the transition before t = 0
and there would be no inflation phase t > 0. If one insists upon only be-
ginning at t = 0, the singularity problem is only solved somewhat artifi-
cially (Linde, private communication).

What is not emphasized in Linde's paper, however, is that the
CW GUTs inflation scenario leads, more likely, to a spinodal metacosmology
because the barrier has a height <<H4 as T*0. On the other hand, in a
model like the one considered in this paper, where the inflation does not
depend on the properties of the potential for small values of the order
parameter, a high barrier and, thus, the regenerative metacosmology clear-
ly occur for a wide range of parameters. Thus, it appears possible that
one more fundamental mystery of early cosmology might, in principle, be
explained with an appropriate inflationary Universe.

This sort of amusing speculation only serves to emphasize the
importance of no fine-tuning in the inflationary scenario. The ''geometric
hierarchy" model under consideration may not be a correct model for parti-
cle physics, but it illustrates how inflation can be achieved without un-
natural assumptions. The "tricks' used for this case, Methods I and II,
may well be useful for a more realistic theory not yet discovered. By in-
creasing our catalog of techniques for accomplishing inflation, we can
hope to raise the inflationary Universe hypothesis from the level of Possi-
ble to the level of Likely.
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ADDENDUM

Eq. (7) only represents an initial guess for the form of the
effective potential based solely on an analysis of global supersymmetry.
The constant term that is computed ensures that the potential, V, is
greater than zero at the minimum, as required by supersymmetry. The analy-
sis began by using this constant as a rough estimate for setting the cos-
mological constant in the equations of motion for the evolution of the
Universe. Without some concrete calculation to determine the effective
potential near <X> = MGUT’ the constant cannot be adjusted so as to make
the cosmological constant at the minimum of the potential equal to zero.

As an improvement on this guess we (Albrecht, et al., 1982b)
have analyzed the lowest order gravitational corrections to the effective
potential. Near <X> = MGUT & Mp’ higher order gravitational corrections
certainly become important, but we have considered the lowest order correc-
tions only to obtain a qualitative feeling of what to expect. We have also
assumed that the Planck scale is introduced as a fundamental scale and not
generated dynamically. If it were generated dynamically by the expectation
value of X, gravitational corrections would be incalculable and important
for all X. By introducing the Planck scale as a fundamental scale we must
accept the fact that we have, to some degree, violated the spirit of the
reverse hierarchy scheme, but at least we can begin to calculate.

Instead of Eq. (2), V with first order gravitational correc-

tions takes the form (Weinberg, 1982):

V= exp(8nOD)[ 2 by, T F.* - 24mc|w|?]
|

i3 1]
oW aD
F, = —/— + 8mTGW (¥ 5 (23)
i 3¢i 8¢i
where D is the supersymmetry term derived from the gauge interactions:
D = —g([A*,A] + [X*,X] + irrelevant terms) (24)
Inserting Egs. (1,24) into Eq. (23), we find that the corrections are
given by:
4
M
1 4 2. .2
V.. —_ - M~ X)) +4A, (25)
A f cq 4 (X c, 8
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where cy and c, are constants that we cannot accurately compute.

Consider the effects of adding Vg to the effective potential,
Eq. (6). First, note that V becomes important compared to the term loga-
rithmic in X when X ~ Mb; fo% large X the correction leads to a minimum
near X ¥ M with a curvature that is geneyally greater than that obtained
from the logarithmic term alone. The constant, A, is chosen so as to set
the cosmological constant at the minimum of the potential (corresponding
to our present Universe) equal to zero. We have computed numerically the
roll-over of the X field for the combined potential and we have discovered
that for a wide (and natural) range of parameters sufficient inflation can
be achieved due simply to the effects of the 3HX term in the equation of
motion, just the same effect as Method I used for Eq. (7). To analyze the

reheating problem (which is aided by the potential which is steeper near

the minimum) we have considered various forms for ¢§:

i nda gl
5= ) [ |
= 7 (26)

We find that for a = 2, b < 2 reheating can be achieved for a wide range
of parameters; for a = 2 and b > 2, almost no reheating occurs. This is
an improvement on the situation in the absence of gravitational effects
where none of these choices resulted in reheating. We have also been
rather conservative in our allowéd choices of the parameters, and a more
precise calculation of gravitational effects could help matters. As it
stands, we are presently examining which is the appropriate choice for ¢
for the supersymmetric model. For the Dimopoulos-Raby model it appears
that because of the decoupling of X from light fields in that model,

b > 6. However, it is not yet clear whether a variation on this class of
models might not yield a case where b < 2 is appropriate. More details
will be provided in Albrecht, et al. (1982b).



