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Understanding the nature and formation of band gaps associated with the propagation
of electromagnetic, electronic, or elastic waves in disordered materials as a function of
system size presents fundamental and technological challenges. In particular, a basic
question is whether band gaps in disordered systems exist in the thermodynamic limit.
To explore this issue, we use a two-stage ensemble approach to study the formation
of complete photonic band gaps (PBGs) for a sequence of increasingly large systems
spanning a broad range of two-dimensional photonic network solids with varying
degrees of local and global order, including hyperuniform and nonhyperuniform types.
We discover that the gap in the density of states exhibits exponential tails and the
apparent PBGs rapidly close as the system size increases for nearly all disordered
networks considered. The only exceptions are sufficiently stealthy hyperuniform cases
for which the band gaps remain open and the band tails exhibit a desirable power-law
scaling reminiscent of the PBG behavior of photonic crystals in the thermodynamic
limit.

photonic band gaps | correlated disorder | hyperuniformity | stealthy | finite-size effects

Band gaps and band tails are well-known features observed in the electric, photonic,
phononic, and elastic band structures of ordered materials (1, 2) that play a critical role
in applications. For certain crystals, the formation of band gaps in the limit of infinite
system size (thermodynamic limit) is well established (1, 3). There is also strong evidence
for the existence of band gaps in certain quasicrystals (2, 4, 5).

In this paper, we consider a broad range of two-dimensional (2D) isotropic networks
with different degrees of correlated disorder and study how their photonic band gap
(PBG) and band tail properties depend on system size. Many past numerical studies
of PBGs in disordered heterostructures have been based on relatively small systems
sizes, such as networks of a few hundred vertices (6–12). Our goal, both as a matter
of fundamental physics and for the purpose of practical applications, is to determine
whether the conclusions based on these smaller disordered systems persist as the system
size gets larger, even approaching the thermodynamic limit.

In particular, we explore the conjecture that stealthy hyperuniformity with sufficiently
high χ values is a necessary condition for PBGs to persist in isotropic disordered networks
in the thermodynamic limit; see ref. 13 and references therein. The vertices in a 2D
isotropic disordered network are hyperuniform if N (R), the number of vertices within a
circular window of radius R, has a number variance σ 2

N (R) that grows more slowly than
R2 as R→∞ (13, 14); or equivalently, the scattering intensity S(k) approaches zero for
wavenumbers k→ 0. Stealthy hyperuniform patterns are ones in which S(k) = 0 for a
range of wavenumbers 0 < k < K , as in the case for crystals (15).

Disordered stealthy hyperuniform samples can be constructed via the collective-
coordinate optimization technique (16, 17) as ground states of a potential that effectively
constrains S(k) for a prescribed range of wave vectors. For stealthy hyperuniform patterns,
the constraint sets S(k) = 0 for 0 < k < K , though other options will also be considered
below. The degree of stealthiness is measured by the parameter χ , which is proportional
to the ratio of the reciprocal space volume of wave vectors with constrained values to
the total number of degrees of freedom; specifically, for 2D networks, χ = K 2/(16πρ),
where ρ is the number density (15).

Isotropic disordered patterns are possible only for χ < 1/2. The conjecture is that,
for fixed dielectric contrast and structural parameters (such as the radius of the disks
located at the vertices and the thickness of the network walls), complete PBGs in isotropic
disordered networks can persist only for stealthy hyperuniform patterns and only for some
limited range of χ , χcrit ≤ χ < 1/2, which is what is meant by “sufficiently large χ”
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in the conjecture. If for an isotropic disordered pattern, there is
no χcrit < 1/2, then no PBG persists for the given dielectric and
structural parameters.

The conjecture is based on the finding that stealthy hyperuni-
formity with sufficiently high χ values automatically combines
several closely related properties analogous to crystals while still
being isotropic: i) no single scattering from intermediate to
infinite wavelengths; ii) holes are strictly bounded with maximal
size on the order of the mean nearest neighbor distance (18, 19);
and iii) a high degree of short-range order asχ becomes large (15–
17). Each of these attributes due to high χ values avoids an effect
that can close an apparent PBG in the thermodynamic limit.

Aside from these properties (i)–(iii), another condition that
favors complete PBGs in two dimensions is uniform local
topology such that a network consists entirely of trivalent
vertices (6). In this paper, we impose this property using the
Delaunay-centroidal mapping technique introduced in ref. 6.
The technique transforms a stealthy hyperuniform pattern of
points into a trivalent network that shares properties (ii) and
(iii) above but which is not precisely stealthy. The deviation
from strict stealthiness produced by the mapping appears to
be negligible within our numerical accuracy, but we comment
further in the conclusions.

Notably, numerical calculations of the band structure for many
different types of isotropic disordered networks that are not
hyperuniform or not stealthy or do not have large χ indicate
complete PBGs, in apparent contradiction to the conjecture.
However, the calculations are limited to relatively small networks
or periodic approximants with relatively few vertices per unit cell,
which cannot technically be regarded as truly isotropic disordered
systems. The latter is defined only in the thermodynamic limit.
To test whether the PBGs remain open for networks required
for larger-scale practical applications and in the thermodynamic
limit, the commonly used approach of computing the band
structure for single instances is not sufficient since existing
highly accurate algorithms, such as the plane wave expansion
method (20) used in our study, can be applied only to modest-
sized networks consisting of several thousand vertices. To extend
our reach, we apply a two-stage density of states (DoS) ensemble
method that approximates the behavior for larger systems by
stacking the DoSs for a large ensemble of modest-sized individual
members checking for convergence as the number of members in
the ensemble is increased. The DoS ensemble approach not only
makes it possible to determine whether apparent PBGs close or
remain open as the system size increases but also enables the in-
vestigation of the band tail shapes with unprecedented precision.

To achieve this precision, we undertook a substantial compu-
tational effort as required to check the conjecture. Analyses of
some of the systems required a computation time equivalent to
about 200 years on a single 2.4 GHz Skylake processor. The total
computation time for the results presented here is about 500 y.

We apply the DoS ensemble method to a spectrum of
disordered networks satisfying different combinations of the
properties deemed essential by the conjecture—bounded holes,
hyperuniformity, and a high degree of stealthiness—as summa-
rized in Table 1 near the end of the paper. Examples include
networks with one, two, all three, or none of the properties.

Although each example appears to produce “apparent” com-
plete PBGs based on numerical results obtained for small system
sizes, only those possessing all three properties maintain complete
PBGs for larger system sizes. Furthermore, the DoS ensemble
method shows that systems that do not possess all three properties
have exponential band tails of the “apparent” PGB that overlap

at some finite DoS, rapidly closing the supposed gap or, at best,
leading to a deep pseudogap. By contrast, to within the numerical
and statistical accuracy achievable, the PBGs remain open for
networks satisfying all three properties; and band tails exhibit a
power-law scaling reminiscent of the tails in crystal systems in
which the band gap is known to remain open.

1. Network Models

We generate a broad spectrum of models with correlated
disorder that encompasses nonhyperuniform and hyperuniform
states with varying degrees of long-range order. The resulting
models possess different combinations of the three properties
(hyperuniformity, stealthiness with high χ , bounded holes)
conjectured to be essential for PBGs in the thermodynamic limit.

We rely heavily on the powerful collective-coordinate opti-
mization technique (15–17), which is a reciprocal-space-based
approach that generates patterns with targeted structure factors by
defining a suitable potential that constrains, at the ground state,
the values of S(k) for a prescribed range of wave vectors. The other
wave vectors are left free to be set by the optimization. By tailoring
the structure factor, this procedure enables us to design a variety
of both hyperuniform and nonhyperuniform states. The different
models below correspond to different constraints on S(k). On the
other hand, the nonhyperuniform random sequential addition
(RSA) does not require the collective coordinate technique as
described below. In all of our models, we choose the unit of
length so that we compare the resulting samples at unit number
density. We, moreover, compare samples with the same constant
number of points per sample.

After constructing the point patterns, we convert them into
trivalent networks using the Delaunay-centroidal method from
ref. 6, since this uniform local topology is known to be favorable
for complete PBGs in two dimensions. Therefore, we first
construct the Delaunay triangulation and then connect the
centroids of neighboring cells. This choice of connecting the
centers of mass (instead of the centers of circumference as in
the standard Voronoi tessellation) reduces the variations in bond
length and angles. Importantly, the Delaunay-centroidal method
preserves the bounded hole property as we rigorously prove in
SI Appendix. Finally, we decorate the nodes of the network with
discs and the edges with walls of finite thickness and adjust
the disc radii (0.16) and wall thicknesses (0.08) to facilitate
the formation of complete PBGs (6). For comparison, we use a
dielectric contrast of 13 as commonly used in earlier studies (1).
Our previous studies of gap dependence on dielectric contrast,
e.g. ref. 21, suggest that, beyond a contrast of about 10, the
qualitative behavior does not depend sensitively on this choice.

Stealthy Hyperuniform. Stealthy hyperuniform systems can be
found as highly degenerate ground states of a class of bounded
pair potentials with compact support in Fourier space (15). Using
the collective-coordinate procedure, as explained above, we here
simulate stealthy hyperuniform samples by a quench from high
temperatures to a disordered ground state (15–17). For χ < 0.5,
these stealthy ground states are fully disordered and isotropic; at
χ = 0.5, there is a phase transition from disordered to ordered
ground states (15, 22). We simulate samples at two different
χ values: an intermediate value, χ = 0.25, as well as a high
value, χ = 0.48, to determine when χ is sufficiently high, as
proposed by the conjecture. At unit number density, χ = 0.48
corresponds to K = 4.9. We ensure the fidelity of our stealthy
hyperuniform samples by checking that the collective coordinate
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optimization is run until the energy above the ground state is less
than 10−19 times what it was for the random (Poisson) initial
state.

Perfect Glass. To test the conjecture for a system that is
hyperuniform but not stealthy, we simulate samples with a power-
law scaling S(k) = 0.02 k2 for k < K = 7.5 around the origin
(which corresponds to χ = 1.11) using the collective-coordinate
procedure. This system is called a perfect glass because the ground
state manifold contains no crystalline phase (23).

StealthyNonhyperuniform. Next, we want to check whether it is
sufficient if the system is stealthy for a range of finite wavelengths
(but not hyperuniform, which would require a range from finite
to infinite wavelengths). The target structure factor is one for
k < K1 and zero for K1 < k < K2. Here, we take K1 = 0.5 and
K2 = 4.9 (i.e., the structure factor vanishes for wavelengths in
the range from about 1.3 to 13). The χ value is, therefore, again
0.48. To increase the short-range order and to obtain a minimal
distance between the points, we add a soft-core repulsion to
the long-range potential of the collective-coordinate procedure.
More specifically, we employ the same simulation procedure as
in ref. 24.

Equiluminous. An equiluminous point pattern is one in which
the scattering intensity or structure factor is constant for a range
of wave vectors (17). Here, we take S(k) to be the positive
constant of 10−2 for k < K = 4.9, indicating that it is neither
hyperuniform nor stealthy. It also lacks the bounded hole size.
Thus, we test the conjecture with a system whose local structure
is quantifiably similar to a stealthy hyperuniform system with
χ = 0.48 but with none of the three properties deemed essential
according to the conjecture. To simulate the samples, we use the
same procedure as for the perfect glass.

RSA. Random sequential addition/adsorption (RSA) is a classic
model of nonoverlapping disks that are randomly placed in the
system, one after the other (25, 26). The packing fraction φ is
the fraction of area covered by the disks. At saturation, i.e., at
the maximal possible volume fraction φ = 0.5470735(28) (27),
no further disk can be inserted into the system. We simulate
RSA samples at φ = 0.547 using the simulation procedure from
ref. 27.

Among all of the models, the ones that satisfy the bounded hole
property are i) stealthy hyperuniform states, as explained in the
Introduction (18, 19), ii) the perfect glass, as recently shown (28),
and iii) RSA at saturation, where by construction, the remaining
holes are smaller than the size of an RSA disk. The perfect glass is
hyperuniform but not stealthy, and RSA disks are neither stealthy
nor hyperuniform (27, 29). For the stealthy nonhyperuniform
and equiluminous systems, we observe exponential tails in the
distribution of hole sizes, which indicates unbounded holes.

2. DoS Ensemble Method

To reliably capture rare events that determine the tail behavior
of the PBGs, we use the plane-wave expansion method (20). In
contrast, finite-difference time-domain (FDTD) methods allow
for larger system sizes but at the expense of accuracy. They may
miss eigenfrequencies or locate spurious ones (1).

Such precise results can currently only be obtained for
networks with up to about 10,000 vertices. To approximate the
behavior for larger systems, we use a two-stage DoS ensemble

BA

Fig. 1. Schematic of our two-stage DoS ensemble method: (A) Band struc-
tures for different members of the ensemble are placed side-by-side and
ordered by gap sizes, increasing from left to right in panel (A); (B) The DoS
D(!) is averaged over all members of the ensemble.

method (Fig. 1). First, we compute the band structures for a
large ensemble of modest-sized members of the ensemble. The
area-normalized DoS D(ω) is then defined as

D(ω) :=
1
A

∞∑
i=1

δ(ω − ωi), [1]

where A is the total area of the sample and the ωi are the
frequencies of the eigenmodes (at the0 point). Note that because
of the isotropy, a single Bloch wavevector suffices. The area-
normalized DoS has dimensions 1/(frequency×area). Here the
units of length and time are set by our choice of c = 1 for
the speed of light and ρ = 1, i.e., a unit number density.
For our finite samples, we approximate the DoS (defined by
Dirac delta distributions δ) by a corresponding histogram. In the
next step, we average the DoS for the entire ensemble checking
for convergence as the number of members in the ensemble is
increased. Finally, we compare the average DoS for increasingly
large system sizes, i.e., number of vertices per sample (ranging
over about two orders of magnitude). The DoS converges within
our statistical and systematic uncertainty. This is consistent with
our underlying assumption of ergodicity.

Fig. 1 is a schematic that illustrates our two-stage DoS
ensemble method based on two different ways of representing the
nature of the photonic states. The left-hand side schematically
shows the computed band structure for different members of the
ensemble placed side by side ordered from the smallest to the
largest gap, going left to right. Even though individual members
of the ensemble may appear to exhibit a PBG, one can see by eye
whether the band gaps of different members of the ensemble are
sufficiently offset with respect to each other so that no common
PBG remains. This behavior is expected if there is no surviving
PBG in the large system limit. If, instead, the PBG remains in the
band structures for all members of the ensemble when they are
placed side by side, the PBG may remain open in the large system
limit. The right-hand side of Fig. 1 schematically depicts the DoS
D(ω) averaged over all members of the ensemble. (See Fig. S5

PNAS 2022 Vol. 119 No. 52 e2213633119 https://doi.org/10.1073/pnas.2213633119 3 of 7
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in ref. 30 for an example obtained for TM polarization only that
shows variations of the PBG between different realizations based
on 500 samples of disk packings each containing 200 disks.)

For our studies of complete band gaps (both TM and TE
polarizations and in all directions), we find that a system size of
about 400 vertices is required to reach the point where there is
only weak dependence ofD(ω) on the sample size. To determine
D(ω) for larger sizes with the requisite accuracy, we introduce
an ensemble of many samples with the largest accessible single-
sample size (up to 9,600 vertices per sample), where the number
of members of the ensemble varies from about 50 to 500,000
depending on the single-sample size. With this DoS ensemble
approach, we are able to study not just the PBGs but also the
band tails, from which we can infer whether they close in the
thermodynamic limit.

3. Results

The band tail behavior is essential for determining whether a
PBG can persist in the thermodynamic limit in a strict sense,
i.e., whether the DoS can vanish, at least in principle, exactly
over some finite range of frequencies as the volume goes to
infinity. If either the upper or lower band tails (or both) have
an exponential form, the tails must cross (closing the apparent
PBG) at a finite DoS Dmin. In contrast, power-law tails may
be sufficiently separated in frequency such that there remains a
finite range of frequencies between the tails for which the DoS is
strictly zero even in the limit of infinite system size, i.e., the PBG
may remain open in the thermodynamic limit.

Of course, we cannot rigorously prove the asymptotic tail
behavior since, numerically, we can only probe finite system sizes.
However, the outcome of our DoS ensemble approach, which
entails sufficiently intensive computational effort to perform the
strong convergence tests described in DoS Ensemble Method, is
strongly suggestive.

For an exponential tail of the DoSD(ω), there is no strict band
edge. Here, we look for exponential-tail behaviors described by

D(ω) ∼ exp (±β±ω) , [2]

with constants β± > 0; Fig. 2A.
A power-law tail of D(ω) is defined in reference to a well-

defined edge frequency ω0:

D(ω) ∼ |1ω|γ , [3]

where 1ω := ω − ω0 and ω0 is the limiting value where the
band tail vanishes, i.e., D(ω) → 0 for ω → ω0; we use the
subscript and superscript± on the quantities γ± and ω±0 to refer
to the upper and lower tails, respectively; Fig. 2B.

Table 1 provides a synopsis of our results for all isotropic
disordered models considered; specifically, those that exhibit
exponential versus power-law tails in the DoS for TE and TM
polarizations, respectively, and, hence, those that potentially
possess complete PBGs in the thermodynamic limit. The table
also includes the particular parameters and attributes, including
whether the model is hyperuniform, whether it is stealthy and
whether it has bounded holes, i.e., the three attributes that

A

B

Fig. 2. Schematic of exponential and power-law tail behaviors: (A) The typical behavior that we observe for most disordered systems is exponential, which
inevitably leads to a closing of the apparent PBG in the infinite system size limit. (B) Power-law tails are an atypical behavior, for which the DoS can be strictly zero
for a range of frequencies even in the limit of infinite system size if the power-law tails are sufficiently separated in frequency. The subscript and superscript ±
on the quantities �±, !±0 , and 
± refer to the upper and lower tails, respectively.

4 of 7 https://doi.org/10.1073/pnas.2213633119 pnas.org
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Table 1. Overview of the structural and photonic properties of our models
Hyper- Bounded PBGs

System labels uniform Stealthy holes TE TM persists

Stealthy hyperuniform � = 0.48 4 4 4 PL PL 4

� = 0.25 4 4 4 CC CC 7

Perfect glass � = 1.11 4 7 4 CC Exp 7

Stealthy nonhyperuniform � = 0.48 7 4 7 Exp CC 7

Equiluminous (10−2) � = 0.48 7 7 7 Exp Exp 7

RSA � = 0.55 7 7 4 Exp Exp 7

The labels of the systems refer to the specific models defined inNetwork Models, where their parameters and properties are explained in detail. The tails of the apparent PBGs are classified
as “Exp,” which means that one or both band tails fit an exponential form (consistent with a closing of the apparent PBG at large system sizes) or “PL,” which means that both band tails
are consistent with a power-law decay. If the tails meet at a too high DoS (Dmin & 0.1), which does not allow for identification of the tail behavior, we classify the tails as crisscross “CC”
(i.e., the apparent PBG closes rapidly as the system size increases). The last column indicates systems for which the DoS exhibits a PBG for the largest systems in our study and potentially
in the thermodynamic limit; these results are consistent with the band tail behavior reported in the previous two columns.

arise from the conjectured necessary properties for PBGs in the
thermodynamic limit, as discussed in the Introduction.

Each of our models has a sufficient degree of short-range order
that small samples with a few hundred vertices per unit cell
exhibit seemingly substantial PBGs. For example, for an RSA
network with 200 vertices, we find a gap-to-midgap ratio of
about 20% and 11% for TE and TM polarization respectively.
However, as the system size increases, the supposed PBGs quickly
diminish. A similar effect can be observed in our DoS ensemble
approach. Assuming ergodicity, we construct ensembles of finite
samples. Even if every individual finite network in the ensemble
has an apparent complete PBG, the frequencies vary between
samples, similar to what is illustrated in Fig. 1. When the band
structures are stacked, the apparent PBG closes as the number
of independent ensemble members increases—in fact, it closes
at a finite resolvable DoS. For example, for our RSA networks,
both the TE and TM pseudogaps bottom out at Dmin ≈ 10−3.
Hence, our ensemble method shows that both the apparent TE
and TM PBGs for RSA networks do not survive in the large
system size limit.

For all models, except the disordered stealthy hyperuniform
one with a high χ value of 0.48, we observe a similar closing
of both the apparent TE and TM PBGs, despite the fact that
their PBGs appear to be open based on studies of smaller
samples—see the last column of Table 1, Fig. 3, and SI
Appendix, Fig. S1. The closing of the supposed PBGs includes
systems that are hyperuniform but nonstealthy as well as stealthy
nonhyperuniform examples (see columns 2 and 3). In all of
these systems, even the apparent TM PBGs close, which are
often considered to be more easily created than TE PBGs. In all
cases, the tails are consistent with exponential decay (see columns
5 to 8), except in cases (marked CC in the table) where the tails
crisscross and close the supposed PBG at such high DoS that the
tail is too short to determine the asymptotic behavior.

For the stealthy hyperuniform networks with χ = 0.48, both
the TE and TM PBGs remain open for the largest systems in
our study and potentially in the thermodynamic limit since
the tails are consistent with a power law behavior; see Figs. 3
and 4. Stealthy hyperuniformity with a high χ value is the only
candidate remaining, to the extent to which we can determine,
for a complete PBG in the thermodynamic limit.

An important subtlety is that the networks labeled “stealthy”
in Table 1 are not precisely stealthy because conversion via the
Delaunay-centroidal method to a trivalent network introduces
small deviations from perfect stealthiness (i.e., S(k) is not
precisely zero for 0 < k < K as it is for the point pattern).
According to the conjecture, we should expect a transition

“deep down the tail” to an exponential-tail behavior like for the
equiluminous system. For example, if we check the TM behavior
of disk packings, where the disks are set on the original point

A

B

Fig. 3. Average DoS D(!) for (A) TE and (B) TM polarization. The vertical color
bands indicate the standard error. For both the stealthy nonhyperuniform
and RSA model, the tails cross and close the apparent PBG; in the former
case, the tails crisscross, and in the latter case, the tails are consistent with
an exponential decay (dashed lines), which inevitably leads to a closing of the
supposed PBG (Fig. 2A). In contrast, for the stealthy hyperuniform model with
� = 0.48, both the TE and TM PBGs remain open for the largest systems in
our study, and the tails are consistent with a power-law behavior (solid lines);
see Fig. 4 for a log–log plot. This scaling allows the PBGs to remain open even
in the thermodynamic limit if the tails are sufficiently separated in frequency;
Fig. 2B.
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Fig. 4. Log–log plots of the tail behavior for the stealthy hyperuniform model
with � = 0.48 for (Left) TE and (Right) TM polarization. For the upper tails, a
power-law scaling is observed over several orders of magnitude of D(!). The
lower tails are too steep to resolve the scaling, but their behavior is consistent
with a power law with the same exponent as for the corresponding upper
tail.

patterns of equiluminous systems with χ = 0.48 as in Table 1,
we observe a crossover to exponential tails at a DoS below about
10−3, even though S(k) for 0 < k < K is quite small (10−2),
implying that the apparent PBG closes; SI Appendix, Fig. S2.

Another illuminating comparison is between the TM PBGs
of a nonstealthy and nonhyperuniform RSA model (31, 32)
composed of disks and a highly stealthy hyperuniform disk
packing (24, 30, 33) (again omitting the conversion to a network
via the Delaunay-centroidal method). In accordance with the
conjecture, we observe exponential tails for the RSA model and
a power-law scaling for the stealthy hyperuniform disks model.
Although the TM band edges for the RSA disks are substantially
apart from one another, the exponential tails indicate that the
apparent PBG found in simulations will close at a finite value
Dmin, resulting in a deep pseudogap.

4. Discussion

Our key takeaway from Table 1 is that, except for the disordered
stealthy hyperuniform system with χ = 0.48, all models
considered here have photonic band tails that cross and close
the apparent PBG at sufficiently large (but computationally
resolvable) system sizes. (In future studies, we will attempt to
determine a precise value of χcrit.) Since the exception is the
only model that satisfies the three properties—hyperuniform,
stealthy with large χ [i.e., very near to the maximum value
of 1/2 in the disordered regime (15)], and bounded holes—
the numerical results are consistent with the original conjecture
(13) that the three attributes—hyperuniformity, high degree of
stealthiness, and bounded holes—are necessary (even if they are
not sufficient) for the existence of a PBG in a disordered network
in the thermodynamic limit.

We, of course, cannot rigorously prove the conjecture that
highly stealthy hyperuniformity is necessary to have complete
PBGs based on finite simulations and computation time. How-
ever, we have been able to show that a wide range of models that
violate the conjecture and that appear to have complete PBGs
based on simulations of small systems actually do not maintain
complete PBGs as the system size increases.

To be sure, for designers of sufficiently small photonic network
solids, the range of disordered structures that have apparent PBGs

is greater. As a matter of principle, though, these apparent PBGs
are not inherent features of the type of disordered model (e.g.,
RSA vs. nonhyperuniform vs. low-χ stealthy hyperuniform, etc.)
but rather strongly depend on the chosen finite system size.
Our goal here is to identify disordered structures for which the
band gap is inherent, i.e., survives in the thermodynamic limit,
as required for a truly disordered system. We recommend our
DoS ensemble approach combined with precisely constructed
disordered models, high statistics, and convergence tests as useful
for testing and assessing robustness of PBGs for general models
and sizes.

Materials and Methods

Simulation Details for Network Models. We start the collective coordi-
nate optimization technique from high-temperature initial conditions, more
specifically, the ideal gas in the canonical ensemble. For the optimization of
the collective coordinates, we employ a limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) optimization algorithm. For the perfect glass, we
take γ = 3 for the weight function; see Eq. 3 in ref. 23. To compare models
with the same number of points per sample, we also condition our simulation
of RSA on the number of disks per sample (i.e., we repeat the simulation until
the prescribed number of points is obtained).

The number of independent ensemble members (M) and the number of
vertices per sample (V) for which we averagedD(ω) in Fig. 3 are summarized
for each polarization (P) as a triplet (P, M, V), where the number of ensemble
members is rounded to the leading digit: stealthy nonhyperuniform (TE, 103,
2,400) and (TM, 200, 2,400); RSA (TE, 3 × 103, 2,400) and (TM, 2 × 103,
2,400); and stealthy hyperuniform χ = 0.48 (TE, 2 × 103, 2,400) and (TM,
2× 103, 2,400). For the other models, SI Appendix, Fig. S1.

Photonic Density of States. We use the open-source software package MIT
Photonic Bands (MPB) (20) to compute the photonic band structures of our
disordered networks. By a choice of units, we set the speed of light to c = 1. We
only compute the eigenfrequencies at the0 point since the models are isotropic.
We confirmed the isotropy of the photonic band structure for our finite-sized
samples. We set the tolerance of the MPB eigensolver to 10−5 and the mesh size
for the smoothing of the values of the dielectric constant to five. The resolution
parameter was set to 20. The DoS is approximated by a histogram with a fixed
bin width of 0.00276.

Data, Materials, and Software Availability. The software MPB (20) used in
this study is publicly available on the website of the project. The final data of this
study will be made available in a Zenodo repository at https://doi.org/10.5281/
zenodo.7315577.
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