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Light Localization in Local Isomorphism Classes of Quasicrystals
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We study a continuum of photonic quasicrystal heterostructures derived from local isomorphism (LI)
classes of pentagonal quasicrystal tilings. These tilings are obtained by direct projection from a five-
dimensional hypercubic lattice. We demonstrate that, with the sole exception of the Penrose LI class, all
other LI classes result in degenerate, effectively localized states, with precisely predictable and tunable
properties (frequencies, frequency splittings, and densities). We show that localization and tunability are
related to a mathematical property of the pattern known as “restorability,” i.e., whether the tiling can be
uniquely specified given only a set of rules that fix all allowed clusters smaller than some bound.
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The choice of orientational symmetry, quasiperiodicity,
and the fundamental repeating units (e.g., tiles, atoms,
molecules) does not uniquely specify a quasicrystal; there
are infinitely many space-filling arrangements of the same
repeating units, with the same symmetry and same support
for their diffraction patterns [1-4]. See Fig. 1(a). They
can be grouped into local isomorphism (LI) classes; two
quasicrystals are in the same LI class if, and only if, any
local configuration of the repeating units found in one can
be found with the same frequency in the other.

This Letter investigates the photonic properties of pen-
tagonal quasicrystal heterostructures across a continuous
spectrum of LI classes composed of different arrangements
of the same obtuse and acute rhombi. We demonstrate that
these heterostructures, though defect-free, possess effec-
tively localized states within their fundamental band gaps
and that the frequencies, frequency splittings, spatial con-
figuration, and concentration of the localized states can be
precisely predicted and tuned in advance by varying the LI
class or other parameters. This flexibility and control is
advantageous in the design of optical cavities for use as
radiation sources [5] or sensors [6]. Existing methods for
generating localized states [7] through disorder (defects)
have the challenge of identifying defect arrangements
that minimize the interference between defects and, at the
same time, enabling the ability to select the frequency
splittings. At present, no such methodology exists for
photonic quasicrystals. (For a review, see Ref. [8].)

We show that the existence and tunability of these states
is related to the fact that, except for a countable subset
of measure zero, the continuous spectrum of LI classes is
not restorable [9,10]. A restorable tiling can be uniquely
specified given only a set of rules that fix all allowed
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clusters smaller than some bound; a well-known example is
the Penrose tiling [11], which satisfies J. Conway’s “town
theorem” [12], a specific type of restorability. Conversely,
nonrestorable means that there exist local configurations
of rhombi whose density can be made arbitrarily small by
continuously scanning through the spectrum of LI classes.
We find that it is these configurations that become the
tunable localization sites.

Tilings and definitions.—The tilings are obtainable as
direct projections from a five-dimensional hypercubic
lattice or as duals to an overlapping set of five periodically
spaced grids [13—15]. We use periodic approximants to
compute the band structure and verify convergence with the
level of approximant.

The approximants are generated using the “generalized
dual method” described in Refs. [15,16], with one modi-
fication: instead of r; = (cos2zi/5,sin2xi/5), the star
vectors are chosen as follows:

to = (1,0), %, = (cos2xz/5,sin2x/5),
fy(n) = (-L7,') - (0. 1),

t3(n) = (n (75 ) - (o ).

f4(n) = (7', =1) - (0. ).

wherez, = F, . /F, (=1/1,2/1,3/2,5/3,...),and F,, is
the nth Fibonacci number (Fy = F| = 1). Examples from
different LI classes are shown in Fig. 1(a). For the Penrose
LI class, this procedure minimizes the density of defects—
necessary to make the tilings periodic—to two mismatched
edges per unit cell [17]. As n — oo, the approximants
approach the ideal tiling; the number of vertices in the unit
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FIG. 1. (a) Examples of periodic approximants from two
different LI classes (top to bottom) and from three different
degrees of approximant (left to right). The LI classes are y = 0
(top row) and y = 0.5 (bottom row). The number of points in the
unit cell for each approximant is N = 76 (left column), N = 199
(middle column), and N = 521 (right column). The unit cell for
each approximant is outlined in dashed red lines. The tiles that
form the unit cell are filled in, with obtuse tiles filled in with green
and acute tiles filled in with yellow. (Some of the unit-cell tiles
extend beyond the dashed red lines, because we have chosen here
to completely fill in tiles (without repeats) that occur at the
boundary of the unit cell, instead of truncating them.) (b) Example
of dielectric structures derived from the N = 521 approximants in
(a). Dielectric cylinders (filled in with green) have axes oriented
along the z axis, which points out of the page.

cell increases; 7, - 7 = (1 + \/5)/2 ~ 1.618, the golden
ratio; and ¥;(n) — r;, the star vectors of the ideal tiling. The
tilings are composed of two types of rhombi, both with the
same edge length a, but one with interior angle 2z/5
(“obtuse”) and the other with 27/10 (“acute”). In the limit
n — oo, the ratio of the number of obtuse rhombi to the
number of acute rhombi is equal to 7 for all tilings; hence,
in the n — oo limit, all tilings have the same number
density, i.e., the same number of vertices per unit area.

The displacement of the ith grid from the origin is the
phase y;, and the sum of the phases y = Z?:o y; labels the
LI class of the tiling. Two tilings are locally isomorphic
(up to inversion) if, and only if, the sums of their phases
y=>4ori ¥ =Y.}, 7, are related by

: (1)

-3+ 0| =] -5+ )

where {y} denotes the fractional part of y. The distinct
values of y lie within the interval [0, 0.5]; y = 0 corre-
sponds to the Penrose tiling. Any y can be mapped to an
equivalent one y’ within the interval [0, 0.5] via

A K

FIG. 2. The four special vertex environments.

r=5-|-5+ ] @)

Moreover, if 7,7’ € [0,0.5] and y # ¥/, then y is not locally
isomorphic to y’.

A vertex environment is a configuration of tiles that
shares a common vertex. There are 16 distinct vertex
environments (up to rotation), and every LI class has a
characteristic distribution of vertex environments (see
Ref. [16] or [18]). The X, Y, Z, and ST vertices (using
the notation of Refs. [13,14,19]) play an important role in
our discussion. They are shown in Fig. 2, and we refer to
them as special vertex environments (SVEs).

Setting up band structure calculation.—We compute
the photonic band structure of dielectric heterostructures
constructed by placing, on the tile vertices and oriented
normal to the tiling plane, an array of parallel, infinitely
long cylindrical rods with dielectric constant 11.56 (silicon)
and radius 0.18a (filling fraction ~12.5%) in a background
of air. The same radius (equivalently, the same filling
fraction) is chosen for all structures to allow for fair
comparison. Examples of such dielectric structures are
shown in Fig. 1(b).

Maxwell’s equations are solved for states with transverse
magnetic (TM) polarization, i.e., with the electric field
oriented parallel to the cylindrical axis [the z axis in
Fig. 1(b)]. The TM band structure is calculated using a
supercell approximation and the plane-wave expansion
method [20,21]. Spatial resolution of the unit cell is chosen
to be 512 x 512. For N = 521 approximants, the frequen-
cies computed at this resolution differ by less than 0.1%
of those computed at 1024 x 1024 resolution. We compute
the lowest 1.1 x N bands, which reliably contain the first
sizeable band gap.

For quasicrystals, the photonic band gaps and the
neighboring bands are known to be highly isotropic
[22,23]. Therefore, we simplify our analysis by restricting
our computation of spectra to the I' = (0,0) and M =
(b, 0) symmetry points, where b is one of the basis vectors
of the reciprocal lattice. These are defined for the hexagonal
first Brillouin zone, corresponding to the thombic unit cell
of the approximant.

Results.—Whenever a SVE appears in a tiling, the TM
band structure contains states in which the electric field is
highly concentrated on the SVE, either on one isolated site
or on many sites. Figure 3 shows representative examples
of these states on isolated sites.

Take one of these states and let r be the radial distance
from the central vertex. We observe that the energy density
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FIG. 3. Representative electric field distribution for the six
observed types of effectively localized states. Blue, red, and white
correspond to a minimum, maximum, and zero power for a given
state, respectively. Contours of dielectric cylinders are shown,
and the vertex environments are overlaid (see Fig. 2). (a) X, (b) Y,
(c) Zy, (d) Z,, (e) STy, and (f) ST,.

u(r) (the square of the field) peaks around r ~ a—where
the first nearest neighbors are located—then drops to
<0.1% of the peak by around r=2a. The field thus
appears to be highly localized on the SVE. However,
because some states are observed to have support on
multiple sites, they may not be localized in the strict sense,
but instead may be multifractal, critical states [24,25].
Determining whether this is the case is worthy of further
investigation. Here, we describe the states as effectively
localized.

The number of effectively localized states is directly
related to the number of SVEs. We empirically observe that
there is one state for every X vertex [Fig. 3(a)], one for
every Y [Fig. 3(b)], two for every Z [Figs. 3(c) and 3(d)],
and three for every ST [Figs. 3(e) and 3(f); there are two
orthogonal states that look like Fig. 3(e)]. Thus, the total
number of effectively localized states n,. is given by

Noe =Nx + Ny + 2Nz + 3Ngr, (3)

where Ny is the number of SVEs of type V. For different
renditions from the same LI class, the number will differ.

In the infinite-system limit, the fraction of effectively
localized states for LI class y is given by

#(r) = Fx(y) + Fy(y) + 2F(y) + 3Fs7(y),  (4)

where Fy is the density of SVEs of type V, shown in
Fig. 4(a). We plot ¢(y) in Fig. 4(b). All of our numerical
results thus far, which are summarized below, support the
counting of effectively localized states according to Egs. (3)
and (4). The SVEs that are composed of a greater number
of acute rhombi and which are more symmetric (i.e., Z and
ST) have a larger number of states per SVE.
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FIG. 4. (a) Density F of the four special vertex environments
(shown in Fig. 2), versus LI class y. (b) Expected fraction ¢ of
special states (shown in Fig. 3) versus LI class y.

Let ok, o!! be the lower and upper frequencies of the
ith band. It is useful to define, for a given tiling, the upper-
band edge frequency w, and the lower-band edge fre-
quency w_ as follows:

vozoh o =all,. (5)

where N is the number of vertices in the unit cell. Figure 5
shows @,, w_, and their average, plotted for several
samples from different LI classes y, for different degrees
of approximants. Several observations can be made:

First, w, and w_ do not change significantly versus
the degree of the approximant, characterized by N. This
indicates that these quantities quickly converge to the
values of the ideal, infinite system.

Second, w, and w_ remain approximately constant
versus y. For the Penrose LI class, the region between
o_ and w, is called the fundamental band gap. Extending
this definition to all LI classes, we find that the effectively
localized states counted by Eq. (3) are high-frequency
states lying within the fundamental band gap.

Finally, the fraction of these states appears to stay
constant as the degree of the approximant increases.
This is contrary to what we would expect if these effectively
localized states arose from defects. We thus conclude that
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FIG.5. Upper-band edge frequency w_. = @ (blue circles, top),
lower-band edge frequency w_ = a)g_nm (red triangles, bottom),
and the central frequency (green squares, middle), versus y. As
discussed in the text, @, and w_ correspond to the upper and lower
edges, respectively, of the fundamental band gap. Dashed lines
represent the average value for a given curve. Each panel is a
different degree of approximant, with increasing degree from left
to right. The number of points in the unit cell is shown above

each panel (N = 76, 199, 521).
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FIG. 6. The average frequencies of effectively localized states
(shown in Fig. 3). In the left panel, the green, solid regions at the
upper and lower ends represent the continuum of states adjacent
to the fundamental band gap. The right panel, which is a blown-
up portion of the left panel around the effectively localized states,
identifies which effectively localized states correspond to the
different frequencies.

these effectively localized states are not defects, but are,
rather, robust states that arise due to the SVEs.

Figure 6 shows the average midband frequency for each
type of state. Within uncertainties, all states of a given type
have the same frequency (i.e., are degenerate), and frequen-
cies for different types do not overlap. This indicates that
each type has a characteristic frequency.

We also observe that the characteristic frequencies do not
vary significantly versus y, which suggests that these states
are primarily attributable to the presence of SVEs and not to
the global structure of the tiling. This supports a hypothesis,
based on the study of one unspecified LI class [26-28], that
these states can be described as local resonances between
closely neighboring scatterers that are arranged in highly
symmetric configurations. Further evidence is that the four
SVEs have the largest numbers of adjacent acute rhombi
(at least four); all other vertex environments contain fewer
than four adjacent acute rhombi.

From these observations, we expect that the TM spectrum
around the fundamental band gap varies with y according to
Fig. 7(a). We also expect the outer band gap—the width of
the gap between bands N and N + 1, normalized by the
midgap frequency—varies with y according to Fig. 7(b).

We thus discover that the Penrose LI class is exceptional
for being the only class with no effectively localized TM
states; as a consequence, it has the largest outer band gap.
All other LI classes have, generically, effectively localized
TM states within the fundamental band gap with predict-
able and tunable degeneracies [Fig. 4(b)] and frequencies
(Fig. 6) and are related to the presence of SVEs. Our initial
studies using other choices of dielectric decoration show
qualitatively the same results, although some choices also
produce effectively localized states within the air compo-
nent of the heterostructure.
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FIG. 7. (a) Expected TM spectrum around the fundamental

bandgap versus LI class y. Average frequencies of effectively
localized states are shown within each range of y that their
corresponding SVEs appear. Also labeled are the SVE types
occurring within each range of y. Green, solid regions at the upper
and lower ends represent the continuum of states adjacent to the
band gap. Note: y = 0 (Penrose LI class) has no SVEs and no
corresponding effectively localized states. (b) Expected outer
band gap versus LI class y.

Discussion—Our results reveal a deep connection
between the localized states and restorability. A quasicrystal
pattern is restorable if it can be uniquely specified given
only a set of rules that fix the allowed clusters within a circle
whose radius is smaller than some bound [9]. The bound can
be used to derive a lower limit on the density of configu-
rations of any given size, including the special vertex
environments (SVEs). The restorable LI classes [10,16]
correspond to y =nt (n € Z), a countable subset of
measure zero in the spectrum of all LI classes described
by the continuous parameter y. The localization sites occur
with non-negligible density, and hence may be multifractal
critical states [24,25] rather than localized in the strict sense.

By contrast, within the uncountable set of nonrestorable
LI classes, y may be varied such that the densities of some
configurations can be made arbitrarily small, as illustrated
in Fig. 4 for the case of SVEs. If the configuration is the
site of a localized state (say, with the field falling away
exponentially from the center, as suggested by the simu-
lations for SVEs), then the state is strictly localized in the
limit that the density approaches zero.

While our study is only in the case of vertex environ-
ments, the same may apply for larger configurations—that
is, there may be larger clusters of obtuse and acute thombi
that are sites of localized states, and there may be sequences
of LI classes for which their density approaches zero.
Similar thresholds almost surely apply to LI classes
obtained by extensions of the dual method that are para-
metrized by additional degrees of freedom aside from y
(such as lattices dual to quasiperiodic pentagrids), and it
may be worth studying such examples for the purpose of
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applications. We note that a similar study in 1D is not
possible for the analogue Fibonacci lattice because the
projection produces only one distinct LI class; however,
there are other studies done on photonic localization in 1D
quasiperiodic systems [29,30].
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