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Through an extensive series of high-precision numerical computations of the optimal complete photonic
band gap (PBG) as a function of dielectric contrast α for a variety of crystal and disordered heterostructures,
we reveal striking universal behaviors of the gap sensitivity SðαÞ≡ dΔðαÞ=dα, the first derivative of the
optimal gap-to-midgap ratio ΔðαÞ. In particular, for all our crystal networks, SðαÞ takes a universal form
that is well approximated by the analytic formula for a 1D quarter-wave stack, SQWSðαÞ. Even more
surprisingly, the values of SðαÞ for our disordered networks converge to SQWSðαÞ for sufficiently large α. A
deeper understanding of the simplicity of this universal behavior may provide fundamental insights about
PBG formation and guidance in the design of novel photonic heterostructures.
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Introduction.—A complete photonic band gap (PBG)
prohibits the propagation of light in all directions and for all
polarizations for a substantial continuous range of frequen-
cies [1,2]. PBGs can occur in heterostructures composed of
two or more substances with different dielectric constants
such as silicon and air; see Fig. 1. In early studies, PBGs
were exclusively found in crystalline structures, such as the
diamond crystal network [3]. Later it was discovered that
quasicrystals without long-range periodic translational
order [4,5] and isotropic “disordered” solids can also
exhibit complete PBGs [6–16].
In this Letter, we present evidence for a subtle, unan-

ticipated universal behavior of the maximum complete
PBG as a function of dielectric contrast among network
heterostructures spanning a wide variety of symmetries and
topologies. For this purpose, we follow a multistage
procedure that begins with identifying different “candidate
classes” of networks distinguished by their nearest-
neighbor table properties (e.g., coordination), translational
order, and rotational symmetry which are known from
past work to include examples with large complete PBGs
[1–3,6,7,18]. For each candidate class, we aim to identify
the member with the largest complete PBG, which are,
based on experience to date, among those that combine the
highest degree of hyperuniformity [19–22] with sufficiently
narrow distributions of bond lengths and angles.
Then, we optimize the microscopic properties of the

selected networks. For this, we assume the networks are
composed of rods and spheres with dielectric constant ε2
embedded in a bulk that has a smaller dielectric constant ε1.
We also assume the rods have circular cross-section with
radius R joined at sphere-shaped vertices with the same

radius R. For each fixed dielectric contrast ratio α ≔ ε2=ε1,
we vary R to find the maximal value of the photonic band
gap-to-midgap ratio ΔðαÞ; that is,

ΔðαÞ ≔ max
R≥0

�
Δω
ωm

ðR; αÞ
�
: ð1Þ

We call the optimized radius RoptðαÞ and the corresponding
optimized volume fraction ϕoptðαÞ.
Since our purpose is to study cases with large PBGs, we

only consider candidate classes known to have some
networks satisfying this condition. In some cases, this
condition is not straightforward to check. For example,
disordered networks typically have many localized defect
modes that break up what would otherwise be a large PBG
into many smaller PBGs. As a last step of the optimization,
we check whether such defects can be removed via bond

(a) (b)

FIG. 1. Photonic networks: (a) the crystal diamond network,
where cylindrical rods connect nearest neighbors of a diamond
lattice, and (b) the disordered nearly hyperuniform network
model; see also video S1 [17].
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switching; if so, then the candidate class is included in the
study and the modified network is treated according to the
same optimization procedure as described above.
Critical to our analysis are high-precision calculations of

the optimal gap-to-midgap ratios, ΔðαÞ, that are unprec-
edented in their scope, both for the wide variety of
heterostructures considered and the wide range of dielectric
contrasts. Performing this computation for disordered
networks with 1000 vertices is only first possible now
using state-of-the-art computational techniques and com-
puter clusters. To get reliable results for ΔðαÞ and hence
SðαÞ, it is essential to (i) accurately determine the opti-
mized volume fraction ϕoptðαÞ; (ii) compute the stopgap
along a number of different directions of propagation;
(iii) use a sufficiently high spatial resolution; and (iv) use a
precise plane wave expansion method to solve Maxwell’s
equation [23,24].
A cursory view of plots of ΔðαÞ as a function of α

already suggests certain common trends across the different
types of networks (despite the distinctly different functional
values). What proves to be the key to revealing the
universal behaviors is the gap sensitivity, SðαÞ, defined as

SðαÞ ≔ dΔðαÞ
dα

: ð2Þ

As we show below, for all our optimized 3D crystal
networks, SðαÞ is well approximated for all α by

SQWSðαÞ ≔
2

π

1

α3=4ð1þ ffiffiffi
α

p Þ ; ð3Þ

where SQWSðαÞ is the precise analytic result for the gap
sensitivity of a 1D quarter-wave stack composed of alter-
nating layers with dielectric constants ε1 and ε2 and each of
quarter-wavelength thickness (which results in an opti-
mized volume fraction) where the propagation of electro-
magnetic waves is perpendicular to the alternating
dielectric layers. For a derivation of the corresponding
formula for ΔðαÞ; see, e.g., Refs. [25,26].
Perhaps even more striking is the fact that, for

all our optimized disordered networks, the values of
SðαÞ also converge to SQWSðαÞ at large α. In other words,
at sufficiently large α, all our optimized crystal and
disordered heterostructures—despite the differences in
symmetry, topology, and long-range order—exhibit the
same universal behavior: SðαÞ ≈ SQWSðαÞ.
Notably, the story is different for small α ¼ Oð1Þ near

the critical value αc (defined as the minimal contrast at
which a complete PBG first appears). Over this range, SðαÞ
displays a common pattern for all our optimized disordered
networks that is clearly distinct from the common pattern
for crystal networks. Namely, whereas SðαÞ for the
crystal networks decreases monotonically even for small
α, SðαÞ for disordered networks first increases, reaches a

maximum, and then decreases, ultimately converging to
SQWSðαÞ as α continues to increase.
Candidate classes of networks.—Among the abundant

variety of known photonic crystals and disordered hetero-
structures, we select, for our computationally intensive
optimization, candidate classes of networks that represent a
broad spectrum of symmetries and coordination numbers.
The diamond crystal network exhibits the largest known
optimal gap-to-midgap ratio ΔðαÞ [2,3,18]. The hexagonal-
diamond network has the same topology and perfectly
tetrahedral vertices but a different symmetry. It has sub-
stantial PBGs, although its optimal gap-to-midgap ratios
ΔðαÞ are distinctly smaller than those of the diamond
network [27]. A better performing photonic crystal is the
rod-connected network based on the Laves graph, which
has the same topology as the single gyroid [2,15,28,29].
The diamond and Laves graphs are the only two crystal
lattices in three dimensions with the “strong isotropic
property” [30], i.e., a symmetry under permutations of
neighboring edges. The key differences are that the
diamond network is fourfold coordinated and nonchiral
with a face-centered cubic symmetry and the Laves graph is
trivalent and chiral with a body-centered cubic symmetry.
We also study a simple cubic (SC) heterostructure, a
sixfold-coordinated network consisting of rods connecting
nearest neighbors in a SC lattice [31,32].
Our isotropic disordered networks are not based on any

underlying lattice. They exhibit a correlated disorder with a
varying degree of both local and global order. Based on
experience to date, the member in a candidate class with the
largest PBG has bond length and angle distributions with a
standard deviation less than 15% of the mean. For larger
variations, the PBG becomes smaller and the absolute
difference between SðαÞ and SQWSðαÞ becomes larger.
One class of disordered models that we consider are

continuous random networks (CRNs), i.e., idealized mod-
els for amorphous tetrahedrally coordinated solids (like
amorphous silicon) [20,33]. The first complete PBG of 3D
disordered networks was found for CRNs [7]. Here, we
study the PBGs of the nearly hyperuniform network (NHN)
model [20]. Starting from a classical CRN, the model is
carefully annealed to suppress large-scale density fluctua-
tions. The model is thus driven towards a vanishing of
density fluctuations in the infinite-wavelength limit, known
as hyperuniformity [19,34]. In two dimensions, hyper-
uniformity has been found advantageous for opening up
large complete PBGs [6].
Another disordered network that we consider is based on

an alternative structural model of amorphous silicon that
was simulated by a slow quench of a liquid using molecular
dynamics (MD) [21]. When we connected each atom with
its four nearest neighbors, we obtained a disordered
photonic network, but it had defect modes that appeared
within a large PBG. We, therefore, switched bonds to
remove the defect modes, nearly doubling the gap size.
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Finally, we introduce quantizer-based networks (QBNs).
We begin from amorphous, nearly hyperuniform inherent
structures of the quantizer energy starting from some
random initial point configuration [22]. For more details
on the quantizer energy functional; see Supplemental
Material Sec. 1 [17] and Refs. [22,35–42]. Next, we
construct the corresponding Delaunay tessellation. A
QBN then connects the centroids of neighboring cells, in
analogy to the tiling procedure for hyperuniform disordered
solids (HUDS) in 2D described in Ref. [6]. In three
dimensions, the tiling procedure was already applied to
hard-sphere packings [9,12,43] and vertex models [16]. To
avoid defect modes for α > 13, we removed each vertex
where two triangles met by bond switching.
Our three disordered networks fulfill all of our selection

criteria. In particular, the ratio of standard deviations to
mean values for the bond lengths and angles are 3.6% and
7.4% for the NHN, 1.9% and 8.5% for the MD quench, and
7.4% and 10.7% for the QBN.
Protocol.—All samples are constructed with periodic

boundary conditions to enable band structure calculations.
The PBGs are accurately determined using the plane-wave
expansion method to solve the frequency-domain eigen-
problem implemented in the MIT Photonic Bands (MPB)
software package [23]. The plane-wave expansion is the
best available method for achieving the high precision
needed for the optimization and analysis presented here. It
is not clear whether the same accuracy can be achieved
using time-domain eigensolvers, like the finite-difference
time-domain (FDTD) method, which may miss eigenfre-
quencies or locate spurious ones [1]. We define a complete
PBG by a range of frequencies for which there are no states
no matter the direction of the wave vector. In practice, we
compute the stopgaps for a finite number of directions
along the edges of the irreducible Brillouin zone.
For each sample and each dielectric contrast α, we

optimize the rod radius R and hence the volume fraction
ϕ of the high dielectric phase. We first determine the gap-
to-midgap ratios Δω=ωm for several radii close to the
putative optimum PBG. Next, we fit a parabola to estimate
the optimized radius RoptðαÞ, at which we then repeat the
band structure calculations. Thus, we determine the optimal
gap-to-midgap ratio ΔðαÞ; see Eq. (1). We estimate SðαÞ,
see Eq. (2), using the symmetric difference quotient.
The combined absolute error depends on the type of

network and dielectric contrast and is significantly smaller
at low than at high α. Therefore, we limit our investigation
to values of α ≤ 26. The error in determining ΔðαÞ is less
than 0.7% for α ≤ 13 and less than about 1.4% for α > 13.
As shown in Fig. S4 of the Supplemental Material [17], the
results are not sensitive to system size.
Gap plots and gap-sensitivity plots.—The key results of

this Letter derive from Figs. 2 and 3. Figure 2 shows plots
of the optimal gap-to-midgap ratio ΔðαÞ as a function of α
(referred to henceforth as the gap plot) for all of our crystal

and disordered networks with different symmetries and
topological characteristics. Figure 3 (the gap-sensitivity
plot) shows the slope SðαÞ ≔ dΔðαÞ=dα for the same
networks.
Results.—Photonic band structures of optimized crystal

and disordered networks considered in this work are shown
in Fig. S1 and video S2 of the Supplemental Material [17].
The gap plot in Fig. 2 shows that the diamond network
exhibits the largest PBG for all dielectric contrasts, closely
followed by the Laves network. At α > 10, disordered
networks have smaller PBGs than the Laves and hexago-
nal-diamond networks. However, ΔðαÞ of the disordered
networks increases more slowly as a function of α than
those of the crystal networks, leading to a notable crossing

FIG. 2. The gap plot shows the optimal gap-to-midgap ratio
ΔðαÞ as a function of the dielectric contrast α. The plot compares
3D photonic crystals (open symbols) to 3D disordered networks
(solid symbols). The dashed-dotted line shows ΔQWSðαÞ for the
1D quarter-wave stack. The inset zooms in on small values of α
where the PBGs first open up for the NHN, MD quench, and
Laves networks.

FIG. 3. The gap-sensitivity plot shows the slope SðαÞ ≔
dΔðαÞ=dα for each of the curves in Fig. 2. For our 3D crystal
networks, SðαÞ is well approximated by SQWSðαÞ for all α. For
our disordered networks, SðαÞ has a maximum at low α ¼ Oð1Þ
and only converges (approximately) to SQWSðαÞ at larger α ≫ 1.
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of curves in the gap plot. In fact, we find a smaller critical
contrast, αc ¼ 4.1, for the NHN model and MD quench
than for the hexagonal-diamond network (αc ¼ 5.8) or
even the Laves network (αc ¼ 4.5). Only the diamond
network has a smaller critical contrast (αc ¼ 3.5).
Moreover, the gap plot shows that the NHN model has a
larger optimal gap-to-midgap ratio [Δð13Þ ¼ 19.7%]
than the currently reported record for CRNs (18%) at
α ¼ 13 [7].
Turning now to the gap-sensitivity plot in Fig. 3, we note

that for all our crystal networks and for all α, SðαÞ is well
approximated without any fit parameter by SQWSðαÞ from
Eq. (3), the analytic result for the quarter-wave stack.
Remarkably, even for our isotropic disordered networks,
SðαÞ converges at large α to SQWSðαÞ to a good approxi-
mation. More precisely, we use “convergence” in this Letter
to mean SðαÞ ¼ ð1� 0.2ÞSQWSðαÞ for α≳ 20, correspond-
ing to an absolute error of 2 × 10−3, which we estimate to
be the systematic error associated with the optimization
protocol used to identify the member of a candidate class
with the topology, bond length and angle distributions, and
volume fraction that maximizes the PBG. Convergence to
within this 20% uncertainty is impressive given the diverse
candidate classes that have been considered: classes with
highly isotropic and anisotropic PBGs; with uniform and
irregular topologies; with translational order and disorder;
and with 1D layered structure and 3D network structure.
We emphasize that the multistage optimization protocol

is essential to achieving this level of convergence. Without
any optimization, the difference between SðαÞ and
SQWSðαÞ would increase by an order of magnitude or
more. Even though SðαÞ is approximately the same for our
three, four, and sixfold coordinated networks, we only find
the universal behavior for networks with relatively uniform
bond lengths and angles, as required in the first stage of our
procedure. To examine the effect of variations in bond
lengths and angles, we randomly perturbed the vertices of a
diamond network using independent and isotropic
Gaussian displacements. The strength of perturbations is
controlled by the ratio a of the standard deviation of the
displacements to the bond length in the unperturbed net-
work. For a ≤ 10%, the perturbed diamond network fulfills
our selection criterion for bond length and angles, as
mentioned above, and SðαÞ approximately converges to
SQWSðαÞ at large α. However, with increasing strength of
perturbations a, we find that the difference between SðαÞ
and SQWSðαÞ increasingly grows until the PBG closes
altogether when a ≈ 0.5. We find the same behavior
for a perturbed CRN [33]. The qualitative behavior of
SðαÞ remains the same, but SðαÞ deviates from SQWSðαÞ
approximately by a constant factor that grows as a
increases.
The second stage of our procedure entails finding the

optimized volume fraction. This step is crucial because
ϕoptðαÞ varies between 8.0% and 38.4% for our networks

and values of α so that, without optimizing ϕ, we obtain
both quantitatively and qualitatively different results. If we
only optimized ϕ to within a certain percentage of the true
optimal value, we observe similar effects as for large
variations in the bond lengths and angles: the difference
between SðαÞ and SQWSðαÞ increases with an increasing
percentage difference between ϕ and ϕoptðαÞ. Alternatively,
if we fix ϕ independent of α, we observe a more dramatic
effect: the gap-to-midgap ratio quickly flattens for large α at
a value well below the optimal ΔðαÞ of that candidate class;
that is, SðαÞ falls rapidly to zero at large α.
Finally, the third stage is necessary to take account of

localized defect modes that break up an otherwise large
PBG. These defects not only decrease ΔðαÞ but also lead to
large deviations between SðαÞ and SQWSðαÞ. We observed
such localized defects in the initial QBN model wherever
two triangles met at one vertex. When we removed these
triangle defects by bond switching, ΔðαÞ increased sig-
nificantly and SðαÞ approached SQWSðαÞ at large α.
Although we do not have a theoretical explanation of the

universal behavior of SðαÞ at large α and the systematic
differences between crystal versus disordered networks at
small α, we find an interesting correlation with the behavior
of the square of the magnitude of the electric field
eigenmodes Eðr; αÞ just below and above the PBG.
More precisely, we find that kEðr; αÞk2 changes more at
small α for a given change in dielectric contrast α than it
does at large α and that this effect is much more pronounced
for the disordered than for the crystal networks. To quantify
this effect, we introduce, as a heuristic measure, the average
change of kEðr;αÞk2 with the dielectric contrast:
DEðαÞ ≔

R j∂kEðr; αÞk2=∂αjdr. Figure S2 [17] shows
that DEðαÞ is, apart from statistical and numerical fluctua-
tions, a decreasing function. At low α, the changes are
distinctly stronger for the disordered than the crystal
networks. In contrast, at large α, where we observe the
universal behavior of SðαÞ, DEðαÞ converges within the
computational uncertainty for the crystal and disordered
networks.
This observation suggests the following argument: At

large α, the electric field is strongly confined by the high-
dielectric material, and the configuration changes only
slowly with the dielectric contrast. At small α, the electric
field is generically less confined to the high-dielectric
material allowing more degrees of freedom to be accessed
when optimizing the PBG. The high degree of translational
order in crystal systems constrains the field configuration
possibilities, so the corresponding curves of SðαÞ still
follow Eq. (3). For disordered systems, though, there are
not the same symmetry constraints, allowing more field
configurations that enable the optimized PBG to decrease
more slowly as α decreases.
We also observe that the derivative of the optimal volume

fraction, dϕoptðαÞ=dα, approximately agrees for all our 3D
crystal networks at all α and is, in fact, well approximated
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by the analytic result for the 1D quarter-wave stack:
dϕQWSðαÞ=dα ¼ −1=ð2α3=2 þ 4αþ 2

ffiffiffi
α

p Þ. Similarly, for
our disordered networks, dϕoptðαÞ=dα approximately con-
verges to the same formula at large α; see Fig. S3 in the
Supplemental Material [17]. This behavior correlates with
our finding that the optimization of the volume fraction is
an essential part of our multistage procedure to reveal the
universal behavior of SðαÞ.
Conclusions and outlook.—For all our candidate classes,

including ordered and disordered varieties with different
symmetries and topologies, SðαÞ of our optimized 3D
networks approximately converges at large α to SQWSðαÞ of
the 1D quarter-wave stack. A physical explanation of this
universal behavior has to apply to both crystal and
disordered networks even though the PBGs in these two
cases have distinctly different physical properties. The
crystal networks have anisotropic PBGs bounded above
at one k point and below by a different k point along the
band gap. The slope SðαÞ of the single stop gaps does not
agree as well with the 1D quarter-wave stack formula as
that of the 3D complete PBG. In contrast, the PBGs of the
disordered networks are isotropic, i.e., they have the same
stop gap in every direction (apart from negligible statistical
fluctuations) so that the upper and lower boundaries of the
PBG are both set by any single k point. Moreover, the
eigenmodes above and below the PBGs of the disordered
networks are localized—again in contrast to the crystal
networks. Finally, a physical explanation has to explicate
why it only applies if the networks are optimized according
to the three stages of our procedure.
We believe the similar behaviors of SðαÞ, DEðαÞ, and

ϕoptðαÞ provide important clues for understanding the
universal curves of SðαÞ reported here, but we have not
yet found a solid theoretical explanation that ties these
different observations together to explain the universal
behaviors. The challenge is to identify how, from a
combination of highly nonlinear physics and a diverse
range of network geometries and topologies explored here,
these behaviors emerge.
As a practical application, the discovery of this universal

behavior at large α makes it possible to estimate for a given
type of optimized heterostructure the photonic band gap-to-
midgap ratio ΔðαÞ for all α once one has determined it for a
single αwithout any further extensive computations. On the
more theoretical side, the fact that the behavior applies to
optimized structures in three dimensions, whether crystal-
line or disordered, as well as to periodic layered media,
indicates an unanticipated simplicity, despite the apparent
non-linear mathematics and complex physics involved in
the PBG computation and the optimization procedure. A
better understanding of this behavior will ultimately help to
identify the relation between the structural features of
optimized heterostructures and the formation of large
PBGs, which may guide the design of improved photonic
heterostructures.
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