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Decagonal and Quasi-Crystalline
Tilings inMedieval Islamic Architecture
Peter J. Lu1* and Paul J. Steinhardt2

The conventional view holds that girih (geometric star-and-polygon, or strapwork) patterns in
medieval Islamic architecture were conceived by their designers as a network of zigzagging lines,
where the lines were drafted directly with a straightedge and a compass. We show that by 1200
C.E. a conceptual breakthrough occurred in which girih patterns were reconceived as tessellations
of a special set of equilateral polygons (“girih tiles”) decorated with lines. These tiles enabled
the creation of increasingly complex periodic girih patterns, and by the 15th century, the
tessellation approach was combined with self-similar transformations to construct nearly perfect
quasi-crystalline Penrose patterns, five centuries before their discovery in the West.

Girih patterns constitute a wide-ranging
decorative idiom throughout Islamic
art and architecture (1–6). Previous

studies of medieval Islamic documents de-
scribing applications of mathematics in ar-
chitecture suggest that these girih patterns
were constructed by drafting directly a net-
work of zigzagging lines (sometimes called
strapwork) with the use of a compass and
straightedge (3, 7). The visual impact of these
girih patterns is typically enhanced by rota-
tional symmetry. However, periodic patterns
created by the repetition of a single “unit cell”
motif can have only a limited set of rotational
symmetries, which western mathematicians first
proved rigorously in the 19th century C.E.: Only
two-fold, three-fold, four-fold, and six-fold
rotational symmetries are allowed. In particular,
five-fold and 10-fold symmetries are expressly
forbidden (8). Thus, although pentagonal and
decagonal motifs appear frequently in Islamic
architectural tilings, they typically adorn a unit
cell repeated in a pattern with crystallographical-
ly allowed symmetry (3–6).

Although simple periodic girih patterns in-
corporating decagonal motifs can be constructed
using a “direct strapwork method” with a
straightedge and a compass (as illustrated in
Fig. 1, A to D), far more complex decagonal
patterns also occur in medieval Islamic archi-
tecture. These complex patterns can have unit
cells containing hundreds of decagons and may

repeat the same decagonal motifs on several
length scales. Individually placing and drafting
hundreds of such decagons with straightedge
and compass would have been both exceedingly
cumbersome and likely to accumulate geometric
distortions, which are not observed.

On the basis of our examination of a large
number of girih patterns decorating medieval
Islamic buildings, architectural scrolls, and other
forms of medieval Islamic art, we suggest that
by 1200 C.E. there was an important break-
through in Islamic mathematics and design: the
discovery of an entirely new way to conceptual-
ize and construct girih line patterns as decorated
tessellations using a set of five tile types, which
we call “girih tiles.” Each girih tile is decorated
with lines and is sufficiently simple to be drawn
using only mathematical tools documented in
medieval Islamic sources. By laying the tiles
edge-to-edge, the decorating lines connect to
form a continuous network across the entire
tiling. We further show how the girih-tile
approach opened the path to creating new types
of extraordinarily complex patterns, including a
nearly perfect quasi-crystalline Penrose pattern
on the Darb-i Imam shrine (Isfahan, Iran, 1453
C.E.), whose underlying mathematics were not
understood for another five centuries in theWest.

As an illustration of the two approaches,
consider the pattern in Fig. 1E from the shrine of
Khwaja Abdullah Ansari at Gazargah in Herat,
Afghanistan (1425 to 1429 C.E.) (3, 9), based on
a periodic array of unit cells containing a
common decagonal motif in medieval Islamic
architecture, the 10/3 star shown in Fig. 1A (see
fig. S1 for additional examples) (1, 3–5, 10).
Using techniques documented by medieval
Islamic mathematicians (3, 7), each motif can

be drawn using the direct strapwork method
(Fig. 1, A to D). However, an alternative
geometric construction can generate the same
pattern (Fig. 1E, right). At the intersections
between all pairs of line segments not within a
10/3 star, bisecting the larger 108° angle yields
line segments (dotted red in the figure) that, when
extended until they intersect, form three distinct
polygons: the decagon decorated with a 10/3 star
line pattern, an elongated hexagon decorated
with a bat-shaped line pattern, and a bowtie
decorated by two opposite-facing quadrilaterals.
Applying the same procedure to a ∼15th-
century pattern from the Great Mosque of
Nayriz, Iran (fig. S2) (11) yields two additional
polygons, a pentagon with a pentagonal star
pattern, and a rhombus with a bowtie line
pattern. These five polygons (Fig. 1F), which
we term “girih tiles,” were used to construct a
wide range of patterns with decagonal motifs
(fig. S3) (12). The outlines of the five girih tiles
were also drawn in ink by medieval Islamic
architects in scrolls drafted to transmit architec-
tural practices, such as a 15th-century Timurid-
Turkmen scroll now held by the Topkapi Palace
Museum in Istanbul (Fig. 1G and fig. S4) (2, 13),
providing direct historical documentation of
their use.

The five girih tiles in Fig. 1F share several
geometric features. Every edge of each polygon
has the same length, and two decorating lines
intersect the midpoint of every edge at 72° and
108° angles. This ensures that when the edges of
two tiles are aligned in a tessellation, decorating
lines will continue across the common boundary
without changing direction (14). Because both
line intersections and tiles only contain angles
that are multiples of 36°, all line segments in the
final girih strapwork pattern formed by girih-tile
decorating lines will be parallel to the sides of
the regular pentagon; decagonal geometry is
thus enforced in a girih pattern formed by the
tessellation of any combination of girih tiles.
The tile decorations have different internal ro-
tational symmetries: the decagon, 10-fold sym-
metry; the pentagon, five-fold; and the hexagon,
bowtie, and rhombus, two-fold.

Tessellating these girih tiles provides several
practical advantages over the direct strapwork
method, allowing simpler, faster, and more ac-
curate execution by artisans unfamiliar with
their mathematical properties. A few full-size
girih tiles could serve as templates to help po-
sition decorating lines on a building surface,
allowing rapid, exact pattern generation. More-
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over, girih tiles minimize the accumulation of
angular distortions expected in the manual draft-
ing of individual 10/3 stars, with concomitant
errors in sizing, position, and orientation.

Girih tiles further enable the construction of
periodic decagonal-motif patterns that do not
arise naturally from the direct strapworkmethod.
One class of such patterns repeats pentagonal
motifs but entirely lacks the 10/3 stars that
establish the initial decagonal angles needed for
direct drafting with straightedge and compass.
Patterns of this type appear around 1200 C.E. on
Seljuk buildings, such as the Mama Hatun
Mausoleum in Tercan, Turkey (1200 C.E.;
Fig. 2A) (5, 15, 16), and can be created easily
by tessellating bowtie and hexagon girih tiles to
create perfect pentagonal motifs, even in the
absence of a decagon star (i.e., lacking decagon
girih tiles; see fig. S5). Even more compelling
evidence for the use of girih tiles occurs on the
walls of the Gunbad-i Kabud in Maragha, Iran

(1197 C.E.) (11, 17, 18), where seven of eight
exterior wall panels on the octagonal tomb tower
are filled with a tiling of decagons, hexagons,
bowties, and rhombuses (Fig. 2, B and C).
Within each wall panel, the decagonal pattern
does not repeat; rather, the unit cell of this
periodic tiling spans the length of two complete
panels (fig. S6). The main decorative raised
brick pattern follows the girih-tile decorating
lines of Fig. 1F. However, a second set of
smaller decorative lines conforms to the internal
rotational symmetry of each individual girih tile
without adhering to pentagonal angles (Fig. 2, C
and D): Within each region occupied by a
hexagon, bowtie, or rhombus, the smaller line
decoration has a two-fold, not five-fold, rotation-
al symmetry, and therefore could not have been
generated using the direct strapwork method. By
contrast, constructing both patterns is straight-
forward with girih tiles. Two sets of line dec-
oration were applied to each girih tile: the

standard line decoration of Fig. 1F, and a second,
nonpentagonal set of motifs with an overall two-
fold symmetry (Fig. 2, C and D). The girih tiles
were then tessellated, with the regular line pattern
expressed in large raised brick on the tower and
the second set of lines expressed in smaller
bricks. The dual-layer nature of line patterns on
theMaragha tower thus adds strong evidence that
the pattern was generated by tessellating with the
girih tiles in Fig. 1F.

Perhaps the most striking innovation arising
from the application of girih tiles was the use of
self-similarity transformation (the subdivision of
large girih tiles into smaller ones) to create over-
lapping patterns at two different length scales, in
which each pattern is generated by the same
girih tile shapes. Examples of subdivision can be
found in the Topkapi scroll (e.g., Fig. 1G; see
also fig. S4A) and on the Friday Mosque (17)
and Darb-i Imam shrine (1453 C.E.) (2, 9, 19) in
Isfahan, Iran. A spandrel from the Darb-i Imam
shrine is shown in Fig. 3A. The large, thick,
black line pattern consisting of a handful of
decagons and bowties (Fig. 3C) is subdivided
into the smaller pattern, which can also be
perfectly generated by a tessellation of 231
girih tiles (Fig. 3B; line decoration of Fig. 1F
filled in with solid color here). We have
identified the subdivision rule used to generate
the Darb-i Imam spandrel pattern (Fig. 3, D
and E), which was also used on other patterns
on the Darb-i Imam shrine and Isfahan Friday
Mosque (fig. S7).

A subdivision rule, combined with decago-
nal symmetry, is sufficient to construct perfect
quasi-crystalline tilings—patterns with infinite
perfect quasi-periodic translational order and
crystallographically forbidden rotational sym-
metries, such as pentagonal or decagonal—
which mathematicians and physicists have come
to understand only in the past 30 years (20, 21).
Quasi-periodic order means that distinct tile
shapes repeat with frequencies that are incom-
mensurate; that is, the ratio of the frequencies
cannot be expressed as a ratio of integers. By
having quasi-periodicity rather than periodicity,
the symmetry constraints of conventional crys-
tallography can be violated, and it is possible to
have pentagonal motifs that join together in a
pattern with overall pentagonal and decagonal
symmetry (21).

The most famous example of a quasi-
crystalline tiling is the Penrose tiling (20, 22), a
two-tile tessellation with long-range quasi-
periodic translational order and five-fold
symmetry. The Penrose tiles can have various
shapes. A convenient choice for comparison
with medieval Islamic architectural decoration is
the kite and dart shown on the left side of Fig. 4,
A and B. As originally conceived by Penrose in
the 1970s, the tilings can be constructed either
by “matching rules” or by self-similar subdivi-
sions. For the matching rules, the kite and dart
can each be decorated with red and blue stripes
(Fig. 4, A and B); when tiles are placed so that

A B C D

FE

G

Fig. 1. Direct strapwork and girih-tile construction of 10/3 decagonal patterns. (A to D) Generation
of a common 10/3 star pattern by the direct strapwork method. (A) A circle is divided equally into 10,
and every third vertex is connected by a straight line to create the 10/3 star that (B) is centered in a
rectangle whose width is the circle’s diameter. In each step, new lines drafted are indicated in blue,
lines to be deleted are in red, and purple construction lines not in the final pattern are in dashed
purple. (E) Periodic pattern at the Timurid shrine of Khwaja Abdullah Ansari at Gazargah in Herat,
Afghanistan (1425 to 1429 C.E.), where the unit cell pattern (D) is indicated by the yellow rectangle.
The same pattern can be obtained by tessellating girih tiles (overlaid at right). (F) The complete set
of girih tiles: decagon, pentagon, hexagon, bowtie, and rhombus. (G) Ink outlines for these five girih
tiles appear in panel 28 of the Topkapi scroll, where we have colored one of each girih tile according
to the color scheme in (F).
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the stripes continue uninterrupted, the only pos-
sible close-packed arrangement is a five-fold
symmetric quasi-crystalline pattern in which the
kites and darts repeat with frequencies whose
ratio is irrational, namely, the golden ratio t ≡
(1 +

ffiffiffi

5
p

)/2 ≈ 1.618. We see no evidence that
Islamic designers used the matching-rule ap-
proach. The second approach is to repeatedly
subdivide kites and darts into smaller kites and
darts, according to the rules shown in Fig. 4, A
and B. This self-similar subdivision of large tiles
into small tiles can be expressed in terms of a
transformation matrix whose eigenvalues are ir-
rational, a signature of quasi-periodicity; the
eigenvalues represent the ratio of tile frequencies
in the limit of an infinite tiling (23).

Our analysis indicates that Islamic designers
had all the conceptual elements necessary to
produce quasi-crystalline girih patterns using the
self-similar transformation method: girih tiles,
decagonal symmetry, and subdivision. The
pattern on the Darb-i Imam shrine is a remark-
able example of how these principles were
applied. Using the self-similar subdivision of
large girih tiles into small ones shown in Fig. 3,
D and E, an arbitrarily large Darb-i Imam pattern
can be constructed. The asymptotic ratio of
hexagons to bowties approaches the golden ratio
t (the same ratio as kites to darts in a Penrose
tiling), an irrational ratio that shows explicitly
that the pattern is quasi-periodic.

Moreover, the Darb-i Imam tile pattern can
be mapped directly into Penrose tiles following
the prescription for the hexagon, bowtie (22),
and decagon given in Fig. 4, C to E. Using these
substitutions, both the large (Fig. 3C) and small
(Fig. 3B) girih-tile patterns on the Darb-i Imam
can be mapped completely into Penrose tiles
(fig. S8). Note that the mapping shown in Fig. 4,
C to E, breaks the bilateral symmetries of the
girih tiles; as a result, for an individual tile,
there is a discrete number of choices for the
mapping: 10 for the decagon, two each for
hexagon and bowtie. Therefore, the mapping is
completed by using this freedom to eliminate
Penrose tile edge mismatches to the maximum
degree possible. Note that, unlike previous
comparisons in the literature between Islamic
designs with decagonal motifs and Penrose tiles
(18, 24), the Darb-i Imam tessellation is not
embedded in a periodic framework and can, in
principle, be extended into an infinite quasi-
periodic pattern.

Although the Darb-i Imam pattern illus-
trates that Islamic designers had all the elements
needed to construct perfect quasi-crystalline pat-
terns, we nonetheless find indications that the
designers had an incomplete understanding of
these elements. First, we have no evidence that
they ever developed the alternativematching-rule
approach. Second, there are a small number of
tile mismatches, local imperfections in the Darb-i
Imam tiling. These can be visualized by mapping
the tiling into the Penrose tiles and identifying
the mismatches. However, there are only a few

of them—11 mismatches out of 3700 Penrose
tiles—and every mismatch is point-like, remov-
able with a local rearrangement of a few tiles
without affecting the rest of the pattern (Fig. 4F
and fig. S8). This is the kind of defect that an
artisan could have made inadvertently in con-
structing or repairing a complex pattern. Third,
the designers did not begin with a single girih
tile, but rather with a small arrangement of large
tiles that does not appear in the subdivided pat-
tern. This arbitrary and unnecessary choice
means that, strictly speaking, the tiling is not

self-similar, although repeated application of
the subdivision rule would nonetheless lead
to the same irrational t ratio of hexagons to
bowties.

Our work suggests several avenues for fur-
ther investigation. Although the examples we
have studied thus far fall just short of being
perfect quasi-crystals, there may be more inter-
esting examples yet to be discovered, including
perfectly quasi-periodic decagonal patterns. The
subdivision analysis outlined above establishes a
procedure for identifying quasi-periodic patterns

A

B C

D

Fig. 2. (A) Periodic girih pattern from the Seljuk Mama Hatun Mausoleum in Tercan, Turkey
(~1200 C.E.), where all lines are parallel to the sides of a regular pentagon, even though no
decagon star is present; reconstruction overlaid at right with the hexagon and bowtie girih tiles of
Fig. 1F. (B) Photograph by A. Sevruguin (~1870s) of the octagonal Gunbad-i Kabud tomb tower in
Maragha, Iran (1197 C.E.), with the girih-tile reconstruction of one panel overlaid. (C) Close-up of
the area marked by the dotted yellow rectangle in (B). (D) Hexagon, bowtie, and rhombus girih
tiles with additional small-brick pattern reconstruction (indicated in white) that conforms not to the
pentagonal geometry of the overall pattern, but to the internal two-fold rotational symmetry of the
individual girih tiles.
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and measuring their degree of perfection. Also,
analogous girih tiles may exist for other non-
crystallographic symmetries, and similar dotted

tile outlines for nondecagonal patterns appear in
the Topkapi scroll. Finally, although our analysis
shows that complex decagonal tilings were being

made by 1200 C.E., exactly when the shift from
the direct strapwork to the girih-tile paradigm
first occurred is an open question, as is the
identity of the designers of these complex
Islamic patterns, whose geometrical sophistica-
tion led the medieval world.
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Ex Situ NMR in Highly Homogeneous
Fields: 1H Spectroscopy
Juan Perlo, Federico Casanova, Bernhard Blümich*

Portable single-sided nuclear magnetic resonance (NMR) magnets used for nondestructive studies
of large samples are believed to generate inherently inhomogeneous magnetic fields. We
demonstrated experimentally that the field of an open magnet can be shimmed to high homogeneity
in a large volume external to the sensor. This technique allowed us to measure localized high-
resolution proton spectra outside a portable open magnet with a spectral resolution of 0.25 part
per million. The generation of these experimental conditions also simplifies the implementation of
such powerful methodologies as multidimensional NMR spectroscopy and imaging.

Single-sided nuclear magnetic resonance
(NMR) sensors have been used for over
two decades to characterize arbitrarily

large samples (1). In contrast to conventional
NMR apparatus, where the sample must be

adapted to fit into the bore of large supercon-
ducting magnets, single-sided NMR experiments
use portable open magnets placed on one side of
an object to detect NMR signals ex situ. This
configuration is convenient for the nondestruc-

tive inspection of valuable objects from which
fragmentary samples cannot be drawn, but it does
not allow generation of the high and homo-
geneous magnetic fields that afford spectral
resolution in conventional NMR studies. Given
these detrimental conditions, the standard tech-
niques of conventional NMR do not work, and
new strategies need to be developed in order to
extract valuable information from the NMR
signal (2–8).

Starting from simple relaxation-time mea-
surements, more sophisticated methods of ex situ
NMR have been developed, such as Fourier
imaging (5), velocity imaging (6), and multi-

Fig. 4. (A and B) The
kite (A) and dart (B)
Penrose tile shapes are
shown at the left of the
arrows with red and blue
ribbons that match con-
tinuously across the edges
in a perfect Penrose tiling.
Given a finite tiling frag-
ment, each tile can be
subdivided according to
the “inflation rules” into
smaller kites and darts (at
the right of the arrows)
that join together to form
a perfect fragment with
more tiles. (C to E) Map-
pings between girih tiles
and Penrose tiles for
elongated hexagon (C),
bowtie (D), and decagon
(E). (F) Mapping of a re-
gion of small girih tiles to
Penrose tiles, correspond-
ing to the area marked by
the white rectangle in Fig.
3B, from the Darb-i Imam
shrine. At the left is a re-
gion mapped to Penrose
tiles following the rules
in (C) to (E). The pair of
colored tiles outlined in
purple have a point de-
fect (the Penrose edge
mismatches are indicated
with yellow dotted lines)
that can be removed by
flipping positions of the
bowtie and hexagon, as
shown on the right, yielding a perfect, defect-free Penrose tiling.
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