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Optimized Structures for Photonic Quasicrystals
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A photonic quasicrystal consists of two or more dielectric materials arranged in a quasiperiodic pattern
with noncrystallographic symmetry that has a photonic band gap. We use a novel method to find the
pattern with the widest TM-polarized gap for two-component materials. Patterns are obtained by
computing a finite sum of density waves, assigning regions where the sum exceeds a threshold to a
material with one dielectric constant, €;, and all other regions to another, €,. Compared to optimized
crystals, optimized quasicrystals have larger gaps at low constrasts €,/€, and have gaps that are much
more isotropic for all contrasts. For high contrasts, optimized hexagonal crystals have the largest gaps.
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Photonic band gap (PBG) materials are structures com-
posed of two or more materials with different dielectric
constants arranged in a spatial configuration that forbids
the propagation of electromagnetic waves in a certain
frequency range. These materials may be considered the
photonic analog of electronic semiconductors, and as such
they have found wide technological relevance [1-3]. It has
been shown recently [4—7] that quasicrystalline structures,
which are not periodic but have long-range orientational
order that is forbidden for periodic systems [8], are prom-
ising candidates as PBG materials. Their advantage over
periodic systems in yielding a full PBG is derived from
their greater rotational symmetry, as this gives rise to a
more isotropic Brillouin zone (BZ) with smaller modula-
tions that depress the gap.

Previous work on finding optimal dielectric structures
[9,10] has been limited to periodic systems, where the band
structure for these may be efficiently calculated numeri-
cally from a single unit cell using plane-wave expansion
techniques [11]. This method is not directly applicable to
quasicrystals because, by definition, they cannot be con-
structed from a repeating unit cell, but one can use a
sequence of periodic approximants and study the limiting
behavior as the cell size becomes large [12-15].

In this Letter, we apply a novel method for find-
ing the dielectric arrangement in two-component, two-
dimensional photonic quasicrystals (in the transverse mag-
netic—TM—polarization) that has maximal band gap. In
this level set scheme, rotational symmetry may be con-
strained, enabling the comparison of optimal structures
with different symmetries. To our knowledge, there have
been no structural optimization procedures that permit this
explicit constraint, making the present scheme fundamen-
tally new. Other topology optimization schemes have been
successful at finding structures that yield targeted material
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properties [16], but are not amenable to the constraint of
rotational symmetry. We obtain optimal structures for crys-
tals with fourfold and sixfold rotational symmetry, as well
as for quasicrystals with fivefold, eightfold, and twelve-
fold rotational symmetry. At low dielectric contrast, the
quasicrystalline structures have greater band gaps than the
crystalline ones; but, at high contrasts, the sixfold (hex-
agonal) crystalline structures yield the greater gaps.
Significantly, optimized quasicrystal gaps are more iso-
tropic than those of crystals, for all contrasts, due to their
disallowed rotational symmetries. For some applications,
very isotropic band gaps may be desirable, even if the size
of the full gap is slightly reduced. For example, if an
application calls for a photonic structure to be surrounded
by cladding of some different heterostructure (such as
another photonic crystal or quasiscrystal), then it may be
possible to engineer point and line defects that span larger
spectral ranges and are more robust against imperfections.

In our method, the spatial configuration of the two
dielectric components is expressed in terms of a finite
sum of density waves p(x), assigning regions where the
sum exceeds a certain threshold a dielectric constant £, and
all other regions g;. As a practical matter, the method is
most efficient if the number of density waves is small. This
makes the method best suited for TM polarization for
which the optimal configurations tend to have smooth
features of a single length scale; by contrast, structures
optimized for TE tend to have sharp features [17,18]. More
specifically, the two-component dielectric function is writ-
ten in terms of a function p such that it takes the value g,
when Re{p} is above a certain threshold and &, when it is
below this threshold. Thus, the dielectric constant at posi-
tion X is given by

o(x) = {sl, if Re{g(x)} > 1,
gp, otherwise,
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where p is a sum of plane waves:

R n

px)=>

r=1j=

A,expliG, x+ 6, )L ()
1

and A, is the (real) amplitude of the “ring” of reciprocal-
lattice vectors (defined below) indexed by r; G, ; is the jth
reciprocal-lattice vector in ring r; ¢, ; is the phase of the
jth plane wave in ring r; R is the total number of rings
employed; and the system has n-fold rotational symmetry.
A ring is defined as a set of reciprocal-lattice vectors that
have equal norms (for crystals) or approximately equal
norms (for quasicrystal periodic approximants), and which
have a predefined rotational symmetry. In particular, the
rth ring with elements indexed by j and of wave number G,
is the set {G, ;: |G, ;| = G,, G, ; € {G}}, where {G} is the
set of reciprocal-lattice vectors. For example, the first ring
of the sixfold symmetric hexagonal lattice is composed of
the six nonzero reciprocal-lattice vectors closest to the
origin in reciprocal space. For the case of periodic approx-
imants, rings are chosen that approximately contain the
noncrystallographic rotational symmetry in question.
Thus, the closeness of the rings to shapes of true n-fold
rotational symmetry defines the quality of the periodic
approximant to the quasicrystal. The direct lattice vectors
of the approximant unit cell are reciprocal to the primitive
vectors of the reciprocal lattice. Here we have chosen
Re{p} = 1 as the threshold which divides regions with
dielectric g, from those of with &;; there is no loss of
generality in this choice since selecting a different thresh-
old is equivalent to rescaling all A, by the same factor. The
phases ¢, ; may be chosen to be the same for all j within
ring r without loss of generality since structures are equiva-
lent up to translations and phason shifts if the sum of their
phases is equal (modulo 27r). For n even, setting equal
phases ¢, ; = ¢ is indistinguishable from rescaling the
amplitudes A, by cos¢; since we are allowing A, to vary

in our optimization scheme, the phases are redundant
variables and can be set to zero.

In the optimization procedure, A, and ¢, that maximize
the full PBG between two chosen bands were found using
the “steepest ascent” method (although ‘“‘simulated an-
nealing” [19] may also be used). Specifically, we itera-
tively adjust the amplitudes and phases A, and ¢, to follow
the direction of the gradient of the band gap in this pa-
rameter space. In a typical run, 5-10 rings are employed.
Multiple optimizations were performed with different ini-
tial parameters in order to ensure a global maximum was
reached. A key advantage of this scheme over Ref. [17] is
that it allows us to find the optimum for a fixed rotational
symmetry and then to study how the optimum changes
with symmetry (e.g., comparing optimal configurations for
a series of periodic approximants approaching an ideal
quasicrystal).

For each crystal lattice, we optimize the full gap around
a Bloch wave number on the order of k = 77/a, where a is
the lattice parameter, i.e., around the first BZ. The
reciprocal-lattice points that define this BZ have wave
number on the order of 277/a and lie in a circle about k =
0. These are the points closest to the origin in reciprocal
space with nonzero k. Consequently, the band gaps we
optimize are formed by the lowest lying bands in the
spectrum. For quasicrystals, the analogous reciprocal-
lattice points (determined by the ‘“‘quasiunit cell parame-
ter,” a) also lie in a circle about the origin, but, in principle,
there is no bound to how many reciprocal-lattice points can
lie inside [8]. Hence, there are infinitely many bands that
lie below the complete band gap. For periodic approxim-
ants, the analogous reciprocal-lattice points form a dis-
torted circle and there are finitely many bands below the
complete band gap, with the number increasing as the
periodic approximant improves (see Fig. 1). To establish
convergence, we calculated the band gaps of structures
with only a single ring included. As the wave number of
the given ring is increased (corresponding to larger approx-
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FIG. 1 (color online).
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Band structure of the fivefold symmetric optimized structure (a) and of the sixfold symmetric optimized

structure (b), both with &,/g, = 6. The path traversed through the BZ is from the center (I') to the center of an edge (E) to a close
vertex (V) and back to I'. Here, w is the frequency, a is the length of a quasiunit cell in (a) and a unit cell in (b), and c is the speed of
light. The quasicrystal lattice parameter a is smaller by a factor of (1/8) compared to the periodic approximant unit cell. The band gap
in (a) is highly isotropic as a result of the high symmetry of the structure. Here, the full gap in the sixfold case (32.5%) is larger than
that in the fivefold case (30.3%) in spite of the greater isotropy of the latter.
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imant cells), the value of the band gap converges to a fixed
value. Note that although the quasiunit cell length has a
natural definition in the Penrose tiling case (i.e., the tile
side length), the dielectric functional form in Eq. (1) yields
no such obvious definition. In the present case, the quasiu-
nit cell may only be defined as a fraction of the length of
the unit cell of the periodic approximant such that it
characterizes the length scale of the structural features of
the dielectric pattern.

Tests were performed in order to establish the accuracy
of the results. For a selection of dielectric contrasts and for
n=4,5,6, 8, and 12, the number of plane waves in the
diagonalization, and the number of wave vectors in the BZ
were increased until convergence was achieved. Higher-
order band gaps, associated with Bloch wave vectors larger
than k = 7r/a, are not analyzed here. However, recent
studies have suggested that these gaps are at most a few
percent larger than the first gap [17]. Since only a finite
number of rings was used in the optimization procedure,
with wave numbers no more than a factor of 5 apart,
structures with features on greatly different length scales
cannot emerge. Optimal TM structures are of a single
length scale [17], so this does not present a problem.

Optimized structures with fourfold, fivefold, and eight-
fold rotational symmetry are shown Fig. 2 for dielectric
contrast ratio 4.0. The band structures of the optimized
fivefold and sixfold configurations are shown in Fig. 1
for contrast ratio 6.0. The n =3 case is not included
because its optimal structures were identical to those of
the sixfold case.

Optimized band gaps are plotted in Fig. 3 for each n over
the contrast range 1-20. The slopes of the band gap curves
form a monotonically decreasing function of the number of
Bragg peaks per ring, as seen in Fig. 3 [14]. This is because
the gap at the BZ edge is (to first order) proportional to the
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FIG. 2 (color online). Unit cells of optimized dielectric struc-
tures in the fourfold, fivefold, and eightfold rotational symmetry
cases [(a), (c), and (e), respectively], with ;/gy = 4.0. In (b),
(d), and (f), the grid points indicate the reciprocal lattice of the
fourfold, fivefold, and eightfold unit cells. The red (or gray)
circles indicate the rings and have radii proportional to |A,].

scattering amplitude across the BZ and scattering power
must be spread over a higher number of peaks per ring for
higher n. To understand this, consider the function p given
in Eq. (1), with a nonzero amplitude in only a single ring
and with the phases set to zero, for simplicity. If the
amplitudes are defined such that the maximum value of
Re{p} is the same for each symmetry, then clearly the
scattering amplitude for a given peak decreases with n.
This argument carries over (although only approximately)
to the case of the dielectric function e, i.e., after the cutoff
has been imposed. Note that if n is even, there are n Bragg
peaks per ring, but if n is odd, there are 2n. Thus, the slopes
of the fivefold structures are expected to be less than those
of the eightfold structures, as seen in Fig. 3. By this
reasoning, frequency gaps (stopgaps) at particular wave
vectors on the BZ boundary will be larger for structures of
lower symmetry. These stopgaps increase with dielectric
contrast ratio.

It is clear in Fig. 3 that the higher-symmetry structures
have greater gaps at low contrast [20]. The quasicrystalline
structures have gaps that are more isotropic than those of
the crystals for all contrasts due to the fact that their
effective BZs are more circular than the BZs of crystals.
For example, the BZ for sixfold symmetry is a hexagon and
the effective BZ for fivefold symmetry is (approximately) a
decagon. In other words, for quasicrystals, the undulations
of the frequency bands (i.e., their variations as a function of
wave vector) are small compared to those of crystals. Since
these undulations suppress the full gap, quasicrystals have
larger full gaps than crystals at low contrast. However,
stopgaps at particular wave vectors increase with dielectric
contrast, and crystals have larger stopgaps. Thus, crystal
gaps increase more rapidly with contrast than quasicrystal
gaps, and the sixfold structures have greater band gaps than
any quasicrystal structure at high contrast. This is seen in
Fig. 1, in which the band structure of optimized fivefold
and sixfold configurations are shown at contrast 6 (where

60 T T

G—8 fourfold
[ |G—© sixfold
eightfold
40 |- | &4 fivefold
0 twelvefold

20

Gap (%)

1 1
10 15 20

Dielectric contrast ENEN

FIG. 3 (color online). Normalized band gaps of optimized
density wave structures for rotational symmetries n = 4, 5, 6,
8, and 12 as a function of the dielectric contrast of the two
phases. For reasons discussed in the text, structures of high
symmetry tend to have larger band gaps for low contrast, but
smaller gaps for high contrast.
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FIG. 4 (color online). The degree of isotropy, I (defined in the
text), of the optimized dielectric configurations, plotted against
dielectric contrast. The quantity 7 is bounded from below by —1
(for the case of a homogeneous medium) and from above by 1
(for the case where the upper and lower bands are perfectly flat).
For all contrasts, quasicrystalline structures have higher isotropy.
Note that the fivefold case has greater isotropy than the eightfold
case because the former has an effective BZ that is closer to a
circle than that of the latter. These zones are a decagon and an
octagon, respectively.

the sixfold has the greater gap). At roughly contrast 20, the
eightfold and fourfold cases meet. Although this suggests
that the fourfold structure has a larger band gap than the
eightfold, they remain too close at higher contrasts to
distinguish.

As mentioned it may be useful to have more isotropic
gaps, even at the cost of a few percent in the full gap width.
We define a measure of isotropy for a PBG as

k‘rréiBnZ{wh(k)} - l&%’%{wz(k)}

I = 3)

l?}s%)iz{wh(k)} - k,IT]}:iBHZ{wz(k)}’

where the minima and maxima are taken over all k on the
boundary of the effective BZ (EBZ), and w; and w,, are
bands just below and just above the gap. It is clear from its
definition that J € [—1, 1]. When I is at its greatest, the
gap is perfectly isotropic, and it is at its lowest in a
homogeneous material. Isotropy is plotted against dielec-
tric contrast for all rotational symmetries in Fig. 4. The
quasicrystals all have higher isotropies than the crystals. J
increases monotonically as the EBZ becomes more circu-
lar. In particular, for the eightfold, tenfold, and twelvefold
cases, the EBZs are an octagon, a decagon, and a dodeca-
gon, respectively. The isotropy of the twelvefold optimized
band gap is indistinguishable from that of the fivefold,
suggesting that the isotropy reached saturation.

In conclusion, we devised a scheme to find crystalline
and quasicrystalline dielectric structures that maximize the
PBG in two dimensions. Because of their high, noncrys-
tallographic rotational symmetries, quasicrystals may have
highly isotropic gaps that are larger than those of crystals
at low dielectric contrasts. However, for sufficiently high
contrasts, optimized hexagonal crystals have greater gaps.

Thus, photonic quasicrystals may be well suited for use
when band gap isotropy is of importance. A future chal-
lenge is to optimize three-dimensional photonic quasi-
crystals. The intuition gained from studying the two-
dimensional case, generalized to three dimensions, may
lead to photonic quasicrystal structures with large three-
dimensional gaps.
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