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Quasicrystalline structures may have optical bandgap proper-
ties—frequency ranges in which the propagation of light is
forbidden—that make them well-suited to the scientific and
technological applications for which photonic crystals1–3 are
normally considered4. Such quasicrystals can be constructed
from two or more types of dielectric material arranged in a
quasiperiodic pattern whose rotational symmetry is forbidden
for periodic crystals (such as five-fold symmetry in the plane and
icosahedral symmetry in three dimensions). Because quasicrystals
have higher point group symmetry than ordinary crystals, their
gap centre frequencies are closer and the gaps widths are more
uniform—optimal conditions for forming a complete bandgap
that is more closely spherically symmetric. Although previous
studies have focused on one-dimensional and two-dimensional
quasicrystals4–7, where exact (one-dimensional) or approximate
(two-dimensional) band structures can be calculated numerically,
analogous calculations for the three-dimensional case are compu-
tationally challenging and have not yet been performed. Here we
circumvent the computational problem by doing an experiment.
Using stereolithography, we construct a photonic quasicrystal
with centimetre-scale cells and perform microwave transmission
measurements. We show that three-dimensional icosahedral
quasicrystals exhibit sizeable stop gaps and, despite their quasi-
periodicity, yield uncomplicated spectra that allow us to experi-
mentally determine the faces of their effective Brillouin zones. Our
studies confirm that they are excellent candidates for photonic
bandgap materials.

In 1984, Schechtman et al. observed icosahedral symmetry with
five-fold rotation axes in the electron diffraction pattern of an alloy of
Al-Mn (ref. 8). Simultaneously, the concept of long range quasi-
periodic order with icosahedral symmetry was theoretically devel-
oped by Levine and Steinhardt9,10. Our realization of a photonic
icosahedral quasicrystal is shown in Fig. 1a. The diamond structure
in Fig. 1b was made for comparative experiments; diamond has been
suggested as an optimal structure for photonic crystals.

Photonic crystals are based on the fact that photons Bragg-scatter
from a medium with a periodically modulated refractive index.
Multiple scattering at frequencies near the Bragg condition prevents
propagation in these directions, producing a ‘stop gap’. Overlap of
the stop gaps in all directions yields a complete photonic bandgap
and traps the light. Intuitively, the complete overlap occurs more
readily in more isotropic structures. Quasicrystals have long-range
quasiperiodic order and higher point group symmetries, so photons
Bragg-scatter along a more spherically symmetric set of directions.
Many recent papers address this question in two dimensions4,6,7. As
the symmetry increases, the Brillouin zone becomes more circular or
more spherical. Photonic quasicrystals also allow for a higher degree
of flexibility and tunability for defect mode properties6.

Figure 1c shows the effective Brillouin zone (related to the pseudo-
Jones zone used in describing electronic transport in quasicrys-
tals11,12) of the icosahedral structure with its irreducible Brillouin
zone highlighted in yellow. For comparison, Fig. 1d shows the first
Brillouin zone of the diamond (face-centred cubic, f.c.c.) structure
with its irreducible Brillouin zone. Note that, as a measure of
sphericity, along the edge of the diamond structure’s irreducible
Brillouin zone the magnitude of k (which is proportional to the stop
gap centre frequency to a first-order approximation) increases 29.1%
from L to W. Along the edge of the effective irreducible triacontahe-
dral Brillouin zone of the icosahedral structure, the magnitude of k
increases only 17.5% from the two-fold to the five-fold symmetry
points. Moreover the triacontahedron’s faces are identical and sub-
tend smaller solid angles.

A D-dimensional periodic lattice has D independent basis vectors,
whereas D þ N linearly independent vectors (with integer N $ 1
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Figure 1 | Experimental photonic structures and their Brillouin zones.
a, Stereolithographically produced icosahedral quasicrystal with 1-cm-long
rods. b, Diamond structure with 1-cm-long rods. c, Triacontahedron, one of
several possible effective Brillouin zones with icosahedral symmetry.
d, Brillouin zone for the f.c.c./diamond structure.
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and D an integer) are required to describe the quasicrystal lattice.
The icosahedral quasicrystal lattice of points can be constructed
by projecting the points of a six-dimensional hypercubic lattice,
the six-dimensional analogue of a three-dimensional cubic lattice.
The coordinate of any lattice point can be described by the relation:
R¼

P6
i¼1niai; where the ni are a subset of the integers and ai are

the six basis vectors: a1 ¼ (1,t,0), a2 ¼ (21,t,0), a3 ¼ (0,1,t),
a 4 ¼ (0, 21,t), a5 ¼ (t,0,1), a6 ¼ (t,0, 21), and t ¼ (

p
5 2 1)/2,

the golden mean. The structure has twelve five-fold, fifteen three-
fold and thirty two-fold symmetry axes. We generate the
lattice points of the icosahedral structure and create a solid
structure by using equal length rods to connect points in pairs. We
have made the overall shape a dodecahedron, so that each of the 12
outside faces will be perpendicular to a five-fold rotation axis, as
shown in Fig. 1a.

Our crystals were created with a stereolithography machine
(model SLA-250 from 3D Systems) that produces a solid plastic
model by ultraviolet laser photopolymerization. The resolution is
0.1 mm lateral and 0.15 mm vertical. Both of our crystals have
vertices connected with rods, of length d¼

ffiffiffi
3

p
a=4 ¼ 1 cm: The rod

diameter is 0.15 cm for our quasicrystal and 0.4 cm for the diamond
structure. Our quasicrystal has 694 cells, 4,000 rods, and consists of
17.3 vol.% polymer. Our diamond structure has 500 cells and is
7.36% polymer. We measured the refractive index ñ of the polymer-
ized SLA5170 resin by placing a solid block in a waveguide and
recording the transmission and reflection spectrum. For 33-GHz
microwaves (l ¼ 0.91 cm in air), ~n¼ 1:652 0:025i: The resulting
(1/e) absorption length is 12 wavelengths. (The finite absorption
from the polymer reduces the transmission approximately as
expð22qhL=cÞ; where h ¼ 0.025 is the imaginary part of the refrac-
tive index and L is the transmission path length. The actual attenu-
ation will depend on the geometry and the modes. In all curves in
Figs 2–4 we have multiplied by the same simple exponential factor to
reduce the background slope. This has no effect on the gap determi-
nation.)

Transmission measurements were made with a HP Model 8510C
Vector Analyser in three bands, from 8 to 15, from 15 to 26 and from
26 to 42 GHz. To approximate plane waves, a single TE10 mode was
coupled through two sets of horn-attached waveguides with two
custom-made polystyrene microwave lenses as schematically shown
in the inset in Fig. 2. Before the sample was inserted, the transmission
spectrum of the set-up is recorded for normalization. The sample has
different symmetry and dimensions in different directions, so
the transmission spectrum should be sensitive to orientation and
polarization. The sample was aligned so that the incident beam

was perpendicular to one of the sample’s rotational symmetry axes.
We rotated the sample along that rotational symmetry axis, and
recorded the relative transmission spectrum every 2 degrees. For the
quasicrystal, a rotation about the two-fold axis covers all the external
points of the irreducible Brillouin zone and both polarizations. The

Figure 3 |Comparison of calculated bands andmeasured transmission for a
diamond structure. a, Calculated dispersion relation f on the boundary of
the first Brillouin zone versus v, for the diamond structure along the dotted
curve in Fig. 1d. b,T(f,v) for the sample rotation along the same curve. There
is excellent agreement at the photonic gap centre frequencies.

Figure 2 |Measured transmission for an icosahedral quasicrystal. a, T(f,v),
transmission as a function of frequency (measured in units of c/d) and angle,
for a rotation about a two-fold rotation axis of the quasicrystal
(corresponding to the dotted line in Fig. 1c) using two overlapping

frequency bands. The dashed line is a 1/cosv curve characteristic of Bragg
scattering from a Brillouin zone face. b, T(f,v) for a rotation about a five-fold
rotation axis corresponding to the dashed line in Fig. 1c. Inset, schematic of
the microwave horn and lens arrangement used for these measurements.
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region covered by the rotation about the two-fold (or five-fold) axis is
shown as the dotted (dashed) red line in Fig. 1c. In Fig. 2 we show the
measured transmission T(f,v) for this rotation in overlapping plots
from two frequency bands.

The simplest way to check our entire procedure is to perform the
experiments on our diamond structure, where we are able to make a
direct comparison with calculated stop gaps. We obtain the photonic
bands of our rod-decorated diamond lattice, using the MIT Photonic
Bands package13. Figure 3a shows the calculated band structure along
a rotation about a two-fold axis. The rotation path is illustrated by
the dotted red line in Fig. 1d. We found excellent agreement between
the observed and calculated gap positions.

To gain insight into these complex spectra, we consider that gaps
result from Bragg scattering. A wavevector that resides on the plane
defined by a reciprocal lattice vector G is Bragg-scattered by G. Such a
wavevector satisfies the condition k·G ¼ jGj

2
=2 or equivalently, jkj ¼

jGj=ð2cosvÞ: To lowest order, the centre frequency of a stop gap is
therefore f G ¼ ðc=�nÞjGj=ð4pcosvÞ; where c is the speed of light in
vacuum and �n is the Bruggeman effective medium index14. The
dashed curves in Figs 2a and 3b correspond to a 1/cos(v 2 vo)
angular dependence consistent with Bragg scattering.

Compared with the diamond structure, the quasicrystal spectrum
appears surprisingly less complex. Because the scattering function
for a quasicrystal is a dense set of Bragg spots (of zero measure),
we might have expected many gaps and zone faces to be intersecting.
Instead there appear to be a few well-defined 1/cos(v 2 vo) curves
in Fig. 2 and therefore few zone boundaries with sizeable gap
formation.

Our method for visualizing the effective Brillouin zone structure is
to invert the process by using the gaps to find the zone faces. We
locate the points in reciprocal space responsible for the gaps by
assuming jkðvÞj< �nf ðvÞ=ð2pcÞ:Then, in Fig. 4 we make polar plots of
T(r ¼ f, v ¼ v). For the diamond lattice, data from a rotation about a
four-fold axis (dashed line in Fig. 1d) and a two-fold axis (dotted line
in Fig. 1d) are shown in Fig. 4b and c, respectively. Figure 4a shows
the calculated frequency deviation ðjdf j ¼ jðf 2 ðc=�nÞjkk=ð2pÞÞ ver-
sus wavevector of the four-fold rotation.

Transmission data for our quasicrystal is shown in Figs 4d and e.
The fact that the low-transmission regions correspond to straight
lines indicates that the gaps lie on planes. These transmission polar
plots, without any further analysis, directly give us the scattering
planes and the effective Brillouin zones. In the smallest zone in Fig.
4d and 4e, we see the decagon from the five-fold rotation, and the
additional symmetry planes from the orthogonal two-fold rotation,
which correspond to the respective cuts of the triacontahedral
Brillouin zone shown in Fig. 1c. (The wavevector corresponding to
the edge centre of the smallest visible decagon in Fig. 4d is t2=

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ 1

p

in units of 2p=d; where d is the rod length.) There are however,

several unexpected features: a strong scattering plane along a 458
direction, the absence of strong scattering from the ‘2’’ plane
(dashed line in Fig. 4e; this may be a polarization effect due to the
rod decoration of the unit cells), and another strong scattering plane
(dash-dotted line in Fig. 4e) not on the triacontahedron. Note that a
complete photonic bandgap would result if the dotted blue curves
(cuts of a constant-frequency sphere) were contained within the gap
of the zone boundary.

We find the following results. First, there is a relatively well-
defined effective Brillouin zone, all of whose faces are consistent
with the quasicrystal Bragg pattern. Second, the Brillouin zone
structure is surprisingly simple despite the fact that a quasi-
crystal has a dense set of Bragg spots. Third, which is a key
result for photonics, the measured Brillouin zone is close to
spherical, with the largest difference in gap centre correspond-
ing to 17% (dotted curve in Fig. 2a). Also, our experiments
demonstrate that three-dimensional quasicrystals exhibit size-
able stop gaps on reasonably well-defined effective Brillouin
zone faces. Hence, despite the quasiperiodicity, much of the
intuition built up for conventional crystals may be applied. This
experience with crystals suggests that our quasicrystal is far
from optimized because it consists solely of thin rods connect-
ing lattice points. A smoother, more spherical, multiply con-
nected, unit-cell decoration with a more equal filled/void ratio
would reduce polarization effects and enhance the gap overlap
while maintaining the nearly spherical Brillouin zone. Laser
tweezers used for particle trapping or two-photon polymeriz-
ation would allow the construction of a quasicrystalline matrix
of dielectric components with a photonic bandgap in the visible
spectrum.
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