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In this (second) paper, quasicrystalline configurations of unit cells are analyzed for the cases of
pentagonal and icosahedral orientational symmetry. We illustrate how two ideal quasicrystal struc-
tures with the same orientational symmetry and unit cells can be composed from very different local
configurations of the cells and emphasize the mathematical and physical significance of subdividing
the configurations into local isomorphism (LI) classes. We discuss various methods of constructing
quasicrystal unit-cell configurations and techniques for determining the LI classes that the methods
generate. Using these techniques, we derive a prescription for constructing the special LI class cor-
responding to the three-dimensional (3D) icosahedral analogue of the original Penrose tilings (con-
figurations which can be generated by local matching and deflation rules). This prescription is then
implemented and the resulting 3D packing is described in detail.

I. INTRODUCTION

An ideal quasicrystal is constructed by the infinite re-
petition in space of two or more distinct atomic or molec-
ular units, which we refer to as “unit cells,” packed in a
lattice that has long-range quasiperiodic translational or-
der and long-range orientational order. The orientational
symmetry, which can be represented by an arrangement of
“star” vectors (see the preceding paper,' hereafter denoted
as paper I), can be arbitrary in general.

In this paper we wish to focus on a key property of
quasicrystal packings of unit cells that has no counterpart
in the study of (periodic) crystal packings. For a crystal
with fixed orientational symmetry, the ideal structure is
defined by a unique packing of a single unit cell. On the
other hand, even for a quasicrystal with fixed orientation-
al symmetry and quasiperiodicity, two or more types of
unit cells are necessary and there are an infinite number of
distinct ideal packings of the unit cells.

We will restrict attention to quasicrystals with two-
dimensional (2D) pentagonal or 3D icosahedral orienta-
tional symmetry, the examples which are of the greatest
physical interest at present. These examples will be used
to introduce a mathematical formalism for constructing
and classifying the quasicrystal arrangements of unit cells.
In particular, it will be shown explicitly how the arrange-
ments fall into different “local isomorphism” (LI) classes
as proposed in paper I, where two arrangements are in the
same LI class if and only if every finite configuration of
cells in each occurs in the other.? In Fig. 1, sections of
three pentagonal quasicrystal tilings which belong to dif-
ferent LI classes are illustrated. Although they have the
same orientational symmetry and unit-cell shapes, the
three tilings clearly have very different local (as well as
global) configurations of unit cells.

We will discuss methods that have been described in the
literature for constructing quasicrystal patterns—the
matching and inflation rule approach,® the projection
methods,*~7 and the generalized dual method® (GDM), or
multigrid® ! method. The first two approaches will be
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shown to generate only a small subset of the possible LI
classes. For the case of icosahedral symmetry, the match-
ing and deflation methods and the projection methods
produce only a single LI class each. Of the three exam-
ples of pentagonal tilings shown in Fig. 1, only the first
can be generated by matching and deflation rules or pro-
jections.

Distinguishing the LI classes for a given orientational
symmetry and quasiperiodicity has mathematical and
physical significance. First, because quasicrystal packings
belonging to two different LI classes have different local
configurations of unit cells, structures obtained by atomic
decorations of the unit cells in the packings will generally
have two different sets of local atomic environments. In
Sec. IV of paper I, other important implications of the ex-
istence of LI classes were discussed. We demonstrated
that two unit-cell arrangements in different LI classes
will, in general, have diffraction peaks at the same wave
vectors but will have different peak intensities. Also,
atomic arrangements belonging to different LI classes
have different free energies. A consequence is that the
ground-state configuration of a quasicrystal must be de-
generate, corresponding to the same local but different
global arrangements of the unit cells, but that ground-
state arrangements must correspond to a single LI class.
Thus, to compute the entropy of a quasicrystal state,
which depends upon the number of unit-cell rearrange-
ments with the same energy, one must count only rear-
rangements in the same LI class.

A case of great mathematical and, potentially, physical
interest is the single, special ‘“Penrose local isomorphism”
(PLI) class corresponding to arrangements generated by
matching and deflation rules [e.g., tiling (a) in Fig. 1].
The original Penrose tiling,'""!? as described in Sec. II of
paper I, is an example of a quasicrystal unit-cell packing
that can be forced through local interactions or matching
rules that constrain the way two tiles can join edge on
edge in the structure. In fact, the mathematical issue that
concerned Penrose when he developed his tilings had
nothing to do with quasiperiodic packing; he was attempt-
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ing to find a set of tile shapes plus matching rules such interested in a more careful definition of the problem and
that the tiles could fill the 2D plane only nonperiodically.  a discussion of its history.) The original Penrose tiling
Only recently has it been recognized that the pattern is ac-  also has the property that the matching rules are
tually quasiperiodic. (The problem of forced nonperiodic ~ equivalent to the constraints placed on adjacent tiles by
tilings has a long and interesting history among mathema-  the requirement of a special self-similarity transforma-
ticians; we recommend Gardner’s article!? to the reader tion, also known as a deflation, such that any tiling con-
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FIG. 1. Characteristic portions of three quasicrystal tilings. Each tiling is the dual to a pentagrid consisting of five grids whose
line positions are given by x,y =N +a, +(1/p)|N/oc+B,]|. (a) p=o=7. a, and B, have values that yield a Penrose tiling. This
pattern could also be obtained from a periodic pentagrid or from direct projection from five dimensions. (b) p=0=7. This is an ex-
ample of the dual of a general Fibonnacci pentagrid. (The values of a, and B, were chosen at random.) Note that this pattern con-
tains adjacent tiles of the same type and orientation and therefore could not be obtained as the dual to a periodic pentagrid (see Secs.
IVB and IVC). (c) p=273"2, 0=3%2. This is the dual of a non-Fibonnacci quasiperiodic pentagrid.
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sistent with the matching rules can also be obtained by a
repeated deflation of an initially small cluster of tiles.

One of the goals of this paper is to present the detailed
construction of the 3D icosahedral analogue to the Pen-
rose tilings—the 3D icosahedral PLI class. The 3D ana-
logue is significantly more subtle than the 2D case, for
reasons that will be discussed later. The construction
method has been applied to find analogues with other
symmetries, including the case of 2D octagonal symme-
try,'3 but we do not know how to extend the approach to
arbitrary symmetry.

The potential physical interest in the special PLI class
of pentagonal and icosahedral tilings is that the matching
rules may have physical manifestations in some atomic
structure through the local interactions of atoms or atom-
ic clusters. These interactions could insure that the quasi-
crystal state is energetically preferred and that the ground
state corresponds to the PLI class. It may even be possi-
ble to “design” covalently bonded atomic systems or com-
plex molecules to enforce such matching rules. We
should emphasize that we have no reason to suggest that
the icosahedral phase of aluminum and manganese (I-Al-
Mn) (Ref. 14) corresponds to the icosahedral PLI class.
However, even if I-Al-Mn does not belong to the PLI
class, the ground-state configuration of a quasicrystal
does correspond to some single LI class. It is at least
worthwhile to study the PLI class as a particular example
of an LI class; its special properties make it easy to
analyze.

In paper I, we introduced the general notion of quasi-
crystals, discussed the classification of quasicrystals ac-
cording to orientational symmetry and quasiperiodicity,
proved various properties about the diffraction patterns of
quasicrystals, and discussed some atomic modeling of 2D
pentagonal quasicrystals.

The organization of paper II is as follows. In Sec. IT we
establish some terminology and briefly review various
methods for constructing quasicrystal packings of unit
cells. In Sec. III we discuss 1D quasicrystals. We apply
the numerous methods that have been devised for con-
structing quasicrystals—deflation rules, projections, and
GDM—to construct the 1D analogue. We show that for
one dimension the methods are essentially equivalent and
we describe some advantages of each. In Sec. IV we apply
the various construction methods to the case of 2D pen-
tagonal quasicrystals. We demonstrate that the GDM
generates a much larger set of LI classes than the other
methods and show how to fix the free parameters in the
GDM construction so as to obtain the PLI class. In Sec.
V we extend the analysis to the case of 3D icosahedral
quasicrystals. We show that in this case the projection
method (from six dimensions) produces only a single LI
class of tilings. We then present the detailed construction
of the PLI class using the GDM. Our concluding re-
marks are given in Sec. VL.

II. QUASICRYSTAL UNIT-CELL PACKINGS

A (periodic) crystal or quasicrystal is constructed from
the repetition in space of structural motifs called unit
cells. In either case, even if the orientational symmetry is

fixed, the identification of the number of unit cells or the
unit-cell shapes is not unique. For example, for a crystal
with square symmetry one possible set of unit cells con-
sists of one element: the square; however, another set con-
sists of two shapes: an octagon, to replace each of the
squares above, and a small square, which fills the gaps be-
tween the octagons. The first set leads to a packing that
corresponds to the square Bravais lattice and it is clearly
the simplest. For the quasicrystal, sets of unit cells com-
posed of 2D rhombuses or 3D rhombohedra appear to be
the most useful, although Penrose has provided at least
four different sets of unit-cell shapes (ranging from two to
six elements) that can all form pentagonal quasicrystal
packings.!> 13

In this paper we restrict attention to quasicrystal pack-
ings of rhombic and rhombohedral unit cells. In order to
discuss methods of constructing and comparing quasicrys-
tal packings of unit cells, it is useful to establish some
basic terminology and concepts. Many of the terms have
been introduced by other authors, particularly by de
Bruijn.9 The reader should be aware, however, that some
definitions differ slightly from other usages in order to fa-
cilitate our discussion of a wide class of quasicrystal pack-
ings (and symmetries).

A. Definitions

The following terms will be defined first for the case of
2D quasicrystals. The extension of the definitions to the
three dimensions is then given in parentheses where neces-
sary. Extension to yet higher dimensions is straightfor-
ward.

(1) A 2D grid is an irifinite set of nonintersecting infin-
ite (open) coplanar curves. The curves in a grid can be la-
beled by integers corresponding to their ordinal position in
the grid. (A 3D grid is an infinite set of nonintersecting,
simply connected, infinite (unbounded) surfaces in a 3D
space. The surfaces in a grid can be labeled by integers
corresponding to their ordinal position in the grid.) As-
signed to a grid is a “star” vector which plays an impor-
tant role in the dual construction (see Sec. II B).

(2) A 2D N-grid is a set of N grids with the property
that each curve in the ith grid intersects each curve in the
Jjth grid at exactly one point for all is4j. If more than
two curves meet at a point in the N-grid, the N-grid is
called singular.’ (A 3D N-grid is a set of N grids with
the property that any triplet of surfaces belonging to the
ith, jth, and kth grids, respectively, where i£j=4k, inter-
sect at exactly one point. Any pair of surfaces belonging
to the ith and jth grids, respectively, where i=4j, intersect
along a single infinite (open) curve. If more than three
surfaces meet at a point, the N-grid is said to be singular.)

(3) A quasilattice (QL) is a set of points with the follow-
ing properties.

QL1: The points lie at the intersections of an N-grid.

QL2: The number of different cell shapes obtained via
the Voronoi construction'® about each point is finite.

QL3: The set of points exhibits quasiperiodic transla-
tional order.

In the same sense that the term lattice can refer to a set of
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points or to the lines (or planes) at whose intersection they
lie, the term quasilattice will refer to a set of points or to
the N-grid (in QL1). Note that QL2 implies the existence
of a minimum distance between neighboring sites and a
maximum distance between nearest neighbors. The pack-
ing of Voronoi cells itself satisfies the definition of quasi-
crystal given in paper I. For many applications, however,
it is more useful to consider the packing of rhombuses or
rhombohedra obtained as a dual to the N-grid®*? since it
contains fewer unit-cell shapes. The term quasiperiodic
translational order in QL3 means, for example, that the
function obtained by associating a delta function with
each lattice site has a Fourier transform consisting of
Bragg peaks whose positions are generated by linear com-
binations of d +1 or more independent wave vectors,
where d is the number of dimensions.

(4) A linear grid is an infinite set of parallel lines, or a
grid composed of straight lines. A vector e normal to
these lines defines the direction of the grid. (A planar grid
is an infinite set of parallel planes or a grid composed flat
planes. A vector e normal to the planes defines the direc-
tion of the grid.) Each line or plane in the grid is defined
by the equation

x-e=xy, NEZ, (1)

where xy is a monotonically increasing sequence in N.

(5) A periodic grid is a linear (or planar) grid in which
the sequence xy is periodic. In this paper we will use the
term to refer to the special case of grids with equal spac-
ing between grid lines given by some constant, 7. In this
case, the periodic grid is totally specified by T and a sin-
gle real number ¥, corresponding to the phase of the grid
with respect to the origin. For a periodic grid

xy=T(N+7). 2)

(6) A quasiperiodic grid is a linear or planar grid in
which the sequence xy is quasiperiodic. In this paper we
will consider as an example quasiperiodic sequences of the
form:

XN=T N (3)

Yip
g

N+a+-l—
P

where a, 8, and p€ R, o is irrational, and “| |” denotes
the greatest integer function (“floor function”). Without
loss of generality, we take o,p >0. The expression defines
a quasiperiodic sequence of long and short spacings of
length T(1+1/p) and T, respectively, where o deter-
mines the relative frequency of the two different spacings
in the sequence and p determines the ratio of the two
spacing lengths that occur between grid lines. The choice
p=o0=r, where 7 [ =(1+1/5)/2] is the golden mean, cor-
responds to a Fibonacci sequence. (See paper I for a
description of the properties of a Fibonacci sequence.)
The effect of a change in a is simply to translate the en-
tire grid in the direction of e, whereas a change in B can
alter the sequence of long and short spacings.

() A linear N-grid is an N-grid composed of linear
grids. (A planar N-grid is an N-grid composed of planar
grids.) Although this paper deals almost exclusively with

linear 5-grids with pentagonal symmetry and planar 6-
grids with icosahedral symmetry, it should be noted that
arbitrary symmetries are possible.®

(8) A periodic pentagrid is a 2D (linear) periodic 5-grid
composed of five sets of grids each oriented normal to one
of the vectors

e, =(cos(2mn /5),sin(27n /5)), n=0,1,...,4.

If the periodic spacing between lines is taken to be unity,
the grid in the nth direction is completely specified by ¥,
[see Eq. (2)] and we can use the notation {y,]} to represent
a periodic pentagrid. Note that de Bruijn’ has used the
term “pentagrid” to refer to a subset of 5-grids which are,
according to our definition, periodic pentagrids.

(9) A periodic hexagrid is a 3D (planar) periodic 6-grid
for which each grid is oriented normal to one of the six
independent fivefold symmetry axes of an icosahedron,
and the periodic hexagrid can be specified by the {y,}
(where n runs from O to 5) associated with the six constit-
uent grids. Note that the hexagrids obtained by Kramer
and Neri* via (grid) projection methods are periodic hex-
agrids.

(10) A gquasiperiodic pentagrid is a S-grid composed of
quasiperiodic grids with directions

e, =(cos(2mn /5),sin(2mn /5)), n=0,...,4.

To completely specify the quasiperiodic pentagrid we
must specify p,, o,, a,, and B, for each n [see Eq. (3)].
The generalization to a quasiperiodic hexagrid is straight-
forward.

(11) A Fibonacci pentagrid is a quasiperiodic pentagrid
based on sequences of the form in Eq. (3) with p, =0, =,
for all n (Fibonacci sequences). The only degrees of free-
dom left in this case are the a, and B,, so we will use the
notation {a,,B,} to represent the Fibonacci pentagrid.
(The generalization to Fibonacci hexagrids is straightfor-
ward.) It can be shown that the intersections of a Fi-
bonacci pentagrid form a quasilattice.

(12) The skeleton of a 2D quasicrystal packing of rhom-
bic unit cells-is a quasilattice decoration of the packing
that can be constructed as follows: In each rhombus, con-
struct the two line segments joining the midpoints of op-
posite edges and with each of these segments associate a
vector that points in the direction of the edges (the ambi-
guity of the sign of the vector must be resolved in the
same way for every segment that connects edges of the
same orientation). The line segments join to form sets of
continuous jagged curves that form a quasilattice. The
quasilattice is referred to as the skeleton of the tiling. (In
3D, the skeleton is formed by planar sections which bisect
opposite faces of the rhombohedra in the quasicrystal
packing. The planar sections join to form connected
jagged surfaces that form a quasilattice decoration of the
packing.)

(13) A grid-space is the space in which an N-grid lies,
including the case of N-grids corresponding to quasilat-
tices and skeletons. A dual transformation maps a grid
space into a cell space such that open regions in grid space
are mapped into points in cell space and points in grid
space are mapped into open regions in cell space.
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B. Methods of constructing quasicrystal packings

Several methods have been developed for constructing
quasicrystal packings of unit cells. It is useful to carefully
distinguish the techniques in order to determine their rela-
tive advantages.

The “matching and deflation rule” approach? is the one
which most closely resembles the approach used to con-
struct the original Penrose tiling. A deflation rule is a
self-similarity transformation in which each unit cell can
be subdivided into pieces that can rejoin to form a new
quasicrystal packing with all unit cells scaled down by
some constant factor. Thus, a unit-cell packing can be ob-
tained by successive application of the deflation rule be-
ginning from a small cluster of unit cells. In some cases,
there exists a set of matching rules in one-to-one
correspondence with the deflation rules; that is, the
matching rules constrain how the unit cells can pack to-
gether edge on edge (or face on face) such that the unit
cells can fill space only in quasicrystal arrangements ob-
tainable by repeated deflation. The matching and defla-
tion rule approach produces only a single LI class that we
term the Penrose local isomorphism (PLI) class, since the
original Penrose tilings are examples of the PLI class for
the case of pentagonal symmetry. We have been able to
fully extend this approach for the case of 3D icosahedral
symmetry.

The “grid projection” approach, due to de Bruijn® and
Kramer and Neri, is a method of obtaining a linear or
planar periodic N-grid as a projection from a higher-
dimensional periodic lattice. The vertices of the unit-cell
packing are then obtained by a “dual” transformation, the
same as we will describe in the discussion of the general-
ized dual method (GDM). It should be noted that it is
straightforward to construct a periodic N-grid in a grid
space without any reference to higher dimensions. The
grid projection approach can be extended to arbitrary
symmetry, but has been discussed only for periodic pen-
tagrids.!” !0

The “direction projection approach,” developed by
Elser,® Kalugin et al.,> and Duneau and Katz,” obtains
the vertices of a quasicrystal packing of unit cells directly
(without taking a dual) by projecting points from a
higher-dimensional periodic lattice. Depending upon the
orientational symmetry, a lower-dimensional projection
plane (corresponding to the real space) is chosen and all
points within a special strip about the plane are projected
orthogonally onto the plane. The strip must be specially
chosen so that the projected points produce a complete set
of vertices for a quasicrystal unit-cell packing. It has
been suggested that the method can be extended to pro-
duce packings with arbitrary symmetry.”!® This method
is powerful because it leads to an elegant and straightfor-
ward method for computing the diffraction pattern of the
packing of unit cells. On the other hand, the method
leads to only a restricted set of LI classes for a given sym-
metry. For example, icosahedral quasicrystal packings
obtained via direct projections from six dimensions to
three dimensions correspond to only a single LI class.

The “generalized dual method,”® or multigrid
method® ' is a method for constructing a much wider
class of quasicrystal packings (different LI classes) than

the other methods for a given orientational symmetry. In
addition, the method can be used to construct quasicrystal
packings with arbitrary symmetry. The one disadvantage
is that there is no direct analytic method known for find-
ing the diffraction pattern of a general GDM quasicrystal
packing. Although the details of the construction method
are given in Ref. 8, we will briefly recount the method.
Given an arbitrary (not necessarily periodic or linear) N-
grid in a grid space, a unique star vector, e;, is associated
with each of the N grids."® Each open region (a region
bounded by grid lines through which no other grid lines
pass) in the N-grid is characterized by N integers, k;: for
each i <N, the open region lies between the grid curves
(or surfaces) which are associated with the e; direction
and which are labeled k; and k;,,, respectively. The
“dual” transformation associates with each open region in
the grid space the point

N
t= 2 k,-ei .
i=1
If each of the grids is quasiperiodic, the set of vertices, t,
is guaranteed to form a full quasicrystal packing of unit
cells with orientational symmetry corresponding to the
star vectors, €;.

III. ONE-DIMENSIONAL QUASICRYSTALS

Even though there is no analogue of orientational order
in one dimension, 1D quasicrystals are useful for illustrat-
ing several important properties of quasicrystal structures.
Most of the features of 1D quasicrystals we will discuss
apply directly to 2D and 3D quasicrystals with crystallo-
graphic orientational symmetry (incommensurate crystals)
as well, since these structures are, in some sense, direct
products of uncoupled 1D quasicrystals. For quasicrys-
tals with noncrystallographic (e.g., pentagonal or
icosahedral) orientational symmetry, the degrees of free-
dom are coupled, and there are new features and physical
properties.

For the purposes of this discussion, we will consider
ideal 1D quasicrystals with atomic positions, xy, given by

xN=N+a+-;—

E+B, , 4)
g

where |x| is the greatest integer less than x, o> 1 is an
irrational number,'® and p> 0, @, and B are arbitrary real
numbers. The 1D analogue of a “packing of unit cells” is
a “sequence of intervals.” Equation (4) describes a se-
quence of atomic sites such that the interval between sites,
Ax =xxy —xy _1, has the property:

L it | Xip u+3J:o,
g o

T 1 N N—1 ®
1+—, if l—+BJ~ l—:-ﬂa’J:l :
P o o

That is, there are only two possible intervals between sites,
L=1+1/p and S =1, which appear in a quasiperiodic
sequence where the ratio of the number of L’s to the
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number of S’s equals 1/(o0—1). Thus, the parameters p
and o determine the relative intervals and frequencies in
the sequence. A case of special interest is p=0 =1, corre-
sponding to the Fibonacci sequence (see paper I), which
also plays a central role in the construction of pentagonal
and icosahedral quasicrystal packings of unit cells.

A. 1D quasicrystals and local isomorphism

There are an infinite number of quasiperiodic arrange-
ments of intervals with the same two lengths and frequen-
cies. These different arrangements correspond to dif-
ferent choices of a and S for fixed p and . In higher di-
mensions, we will want to discuss the possible arrange-
ments of unit cells (the analogues of intervals in one di-
mension) and classify arrangements according to the “lo-
cal ismorphism” (LI) class. In one dimension the precise
definition of local isomorphism is as follows.

Definition: Two 1D quasicrystals are locally isomorphic
(or, equivalently, in the same LI class) if and only if given
any point P in either structure and any finite distance d,
there exists a translation of the other structure such that
the (atomic) positions xy coincide exactly from P out to
at least distance d.

Two 1D quasicrystal sequences that are related by a pure
translation are obviously in the same LI class according to
this definition. Two 1D quasicrystals are not in the same
LI class if there exists even a single finite subsequence of
intervals in one that does not occur in the other.

For fixed p and o, we can show that the 1D quasicrys-
tals described by Eq. (4) are in the same LI class for all
(a,B). (The 1D case is trivial in this sense, but the analo-
gue construction in higher dimensions results in many ine-
quivalent LI classes, as we shall show in later sections.)
First, shifts in a correspond to pure translations of the
quasicrystals and so two quasicrystals (a,8) and (a’,B)
are obviously in the same LI class according to the defini-
tion above.

The fact that (a,B) and (a,B’) are in the same LI class
is less obvious. First, it is useful to note that transforma-
tions of the form:

a—a+p+i,
P (©)
g

where p and ¢ are integers, leave a 1D quasicrystal com-
pletely unchanged—the sites and sequence of intervals are
the same, although the integer label for a given site may
change. We shall refer to this special class of discrete
transformations as an umklapp. In some sense, it plays
the same role for quasicrystals as the translation by a sin-
gle lattice spacing does for periodic crystals. If quasicrys-
tals (a,B) and (a',B') are related by an umklapp, they are
identical. In general, we will refer to two quasicrystals
(a,B) and (a’,B’) related by a translation plus an umklapp
as being umklapp congruent. Two sequences that are um-
klapp congruent are obviously in the same LI class. Note
also that if quasicrystals 4 and B are umklapp congruent

to C, then they are umklapp congruent to one another.

Theorem 3.1. (a,B) and (a',B') are in the same LI
class.

Proof: Choose any site P in (a,8). The sequence (a,f3)
can be translated to a sequence (a",) where the point P
corresponds to xo. Now, first suppose that 8'—f is of
the form —gq +p /o for some pair of integers p and gq.
Then the sequence (a’,B’) can be translated

al__)au_i_p_*__q_
p

and the translated sequence (a''+p +q/p, B—q +p/0) is
clearly an umklapp of (a’’,B), which is a translate of
(a,B). Thus the two sequences are umklapp congruent
and are in the same LI class.

Next, suppose B’'—f cannot be expressed in the form
—q +p/o. Nevertheless, because o is irrational, 8'—f
can be approximated arbitrarily well by expressions of this
form; that is, for every & there exist integers p and g such
that

B'—B=—q+L te,
g

where €<8. Since we can translate a’'—a'’ +p +4q/p,
(a’,B’) is umklapp congruent to (a”, B+¢€) for arbitrarily
small e. From Eq. (4) we see that (a”,B) and (a”, B+é€)
are identical for sites ranging from N =0 (corresponding
to site P) up to N =1/\}, where N is the smallest integer
such that

+#

N
—+B+e
(o}

N
—+B
o

As € approaches zero, this occurs only for increasing
values of N approaching infinity. Note that this same ar-
gument would work if we began with some point P in
(a’,B’) and umklapped (a,B). Thus, by the definition
above, the two sequences are in the same LI class.

Note that in the last case, the two sequences are not
umklapp congruent. Although they are identical up to
any finite distance, there is no finite translation of one
such that the two sequences coincide out to infinite dis-
tances.

B. Methods of constructing 1D quasicrystals

Although the 1D case is significantly more trivial than
the higher-dimensional analogues, it is instructive to com-
pare the different methods of constructing unit-cell pack-
ings for 1D quasicrystals.

1. Deflation rule approach

There is probably not any (local) matching rule for the
intervals that will force a quasicrystal packing.® We can
still, however, discuss deflation rules in one dimension—
self-similarity transformations that divide each interval in
a 1D quasicrystal into subintervals that form a new quasi-
crystal sequence of intervals. The deflation rules, as dis-
cussed in Ref. 3, are relevant to sequences defined by alge-
braic numbers,*' numbers which are roots of polynomial
equations with integer coefficients. (These are also the
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cases relevant to quasicrystals with orientational symme-
try corresponding to some polygon in two dimensions or
polyhedron in three dimensions.) The degree of an alge-
braic number is the degree of the lowest-order polynomial
equation satisfied by that number.

We shall first consider the case of 1D quasicrystals cor-
responding to Eq. (4) with the Fibonacci sequence,

P £ Vs
p= =5

All neighboring atoms are separated by either L or S
where L =7 and S =1. The sequence of L and S inter-
vals has the property that it is invariant under a “substitu-
tion rule” or “deflation rule” of the form:

L 1 1}(L
S 1 0((S

—

. )

The deflation rule means that each L in the sequence is
replaced by the pair of intervals LS and each S in the se-
quence is replaced by an L. When this procedure is car-
ried out another Fibonacci sequence is obtained [though
usually with a different value of a and B in Eq. (4)]. An
equivalent deflation rule (up to a translation) is
L _L
L 5 S 5 (8)

which is depicted in Fig. 2. We have chosen this last defi-
nition for the analysis in this paper.

Now let us consider how deflation acts on the parame-
ters of the 1D quasicrystal defined by the Fibonacci se-
quence,

1
xy=N +a+—7j

£+Bl . 9)
-

A minor caveat to our treatment here is the special care
must be taken if B8 is a number of the form k +1!/7 where
k and ! are integers (i.e., B is in the ideal of 7), in which
case B+N/7 is equal to an integer for some N.
Throughout this paper we assume that 8 is not of this
form (unless otherwise stated). This case requires special
treatment at all stages and adds nothing of interest to our
results.

A deflation of a 1D quasicrystal sequence according to
Eq. (4) and Fig. 2 is given by a transformation of the «
and B:

L s L L s
T 1

I

o _% o |
1 | i 1
!S}L‘LlSlLls L

Zo

FIG. 2. Unscaled deflation of a Fibonnacci grid. The origi-
nal grid is shown on top. The deflation is performed according
to Eq. (8). The N =0 lines of the original and unscaled deflated
grids are marked by x, and x, respectively.

a*=71|la+——— , (10)
T 2 T

18] 1 ]_ 18°

B*==(18]-8B). (11)

(The asterisk indicates a parameter of a deflated se-
quence.) Stolarsky,?? de Bruijn,” and others have derived
Eq. (11) by considering the action of a deflation on the or-
der of long and short intervals with a specific convention
for determining the zeroth interval. We have derived Eq.
(10) which insures that the left-hand end point of the
zeroth interval of the deflated sequence corresponds to x
(see Fig. 2). Note that the intervals in the deflated se-
quence have been scaled by 7 so that the lengths in it are
the same as in the original. This formula becomes a bit
more transparent if one notes that the quantity
a+77"|B] is just xo, so that Eq. (10) can be rewritten as

x§=1lxo—=%). (12)

Figure 2 illustrates this relation. These transformation
rules shall play a very important role in our discussion of
pentagonal and icosahedral quasicrystals.

In Ref. 3, the most straightforward extension of defla-
tion rules to other sets of algebraic numbers was dis-
cussed. One begins with k lengths (L;), at least some of
which must be incommensurate. Then there is a substitu-
tion rule:

(L)—My(L;), (13)

where the matrix M;; is a kK X k nonsingular matrix with
non-negative integer coefficients. It must also have irra-
tional eigenvalues which, because M;; has integer coeffi-
cients, must satisfy a polynomial equation of kth degree
(i.e., be algebraic numbers). If the matrix is irreducible in
the sense that it cannot be block diagonalized, we say the
substitution rule describes a k-component quasicrystal.
There remain many interesting open issues concerning
deflation rules. First, we do not know how to obtain a
closed-form expression, such as Eq. (4), appropriate to a
general deflation rule. Simple expressions utilizing the
greatest integer function, such as Eq. (4), are only relevant
(so far as we know) to cases where ratios of length scales
and frequencies are algebraic numbers of degree two
(quadratic irrationals). This is related to the fact that the
greatest integer function is useful in determining rational
approximants to quadratic irrationals.?! Second, we do
not know how to compute the diffraction pattern associat-
ed with a quasicrystal sequence generated by a general de-
flation rule. [It is straightforward to compute the diffrac-
tion pattern of any of the sequences generated in Eq. (4)
using the methods described in paper I. Up to an overall
scale factor, the location of the peaks is identical for fixed
o, independent of p]. In fact, if the substitution matrix
for a deflation rule has more than two eigenvalues of
modulus greater than unity, we do not know if the Fourier
transform converges to true Dirac & functions.?®> Third,
one can consider the possibility of deflation rules involv-
ing more than just a single substitution rule. For example,
one can consider the possibility of using a sequence of
substitution rules, or different substitutions for different
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elements of the same length. This can lead to a situation
where the deflation of an interval of given length depends
upon its place in the sequence of intervals. (Pleasants
terms these “bounded context inflations.”?*) The 1D
quasicrystals obtained by direct projection from a 2D
periodic lattice to a 1D quasicrystal sequence where p and
o are algebraic numbers of degree three or higher appear
to cozl;respond to deflation rules of this more complicated
type.

Because we find the matching and deflation approach
the most difficult to study analytically and to generalize,
we generally prefer the GDM approach. Nevertheless, the
deflation approach is the most straightforward way of ob-
taining a 1D quasicrystal with simple self-similarity
transformations (which is difficult and sometimes impos-
sible to obtain by the other methods®*). Furthermore, the
notion of deflation rules are critical for identifying the spe-
cial Penrose local isomorphism class in 2D and 3D, as we
shall see.

2. Direct projection approach

Although the direct projection approach has been dis-
cussed for 1D quasicrystals elsewhere,®%2%25 we wish to
present it (in a slightly more general context) in order to
relate it to other approaches.

In the direct projection approach, the positions of sites
in the 1D quasicrystal sequence, xy, are obtained by pro-
jection from a 2D periodic lattice onto a line. Only a sub-
set of points in the periodic lattice lying within a specially
chosen strip about the projection line are projected. Thus,
both the projection line and the strip are critical com-
ponents in the direct projection approach.

To obtain 1D quasicrystals corresponding to the se-
quences described in Eq. (4), consider a 2D periodic lattice
with rectangular unit cells of dimensions @ xb whose
edges are aligned with the x and y axes, respectively.
Next, construct a projection line oriented at angle 6 with
respect to the x axis. (See Fig. 3.) For only a small subset
of unit cells does the projection line pass through the
right-hand vertical edge of the unit cell. If the lower
right-hand vertex, say, of each such unit cell is projected
orthogonally onto the line, it produces a sequence of
points described by Eq. (4).

To establish this result, it is useful to distinguish three
sets of points in Fig. 3. First, marked by open squares is a
set of points that we will call grid points corresponding to
the intersections of the projection line with vertical lines
of the lattice. The intersection with the mth vertical line
has coordinates (ma, ma tan@+y,), where y, is the y in-
tercept of the projection line. Next, marked by open cir-
cles is the set of points corresponding to the lower right-
hand corner of each unit cell for which the projection line
passes through the right-hand vertical edge. Their coordi-
nates are
m %tane + 1}\0—

b b

Third, there are the projections of these points onto the
projection line, indicated by the solid circles. Their coor-

b

o~
ma,

dinates along the projection line (up to an overall transla-
tion) are
A ~ a Yo
Xy =Na cosf+b sinf | N—tanf+ —
b b

[

If we choose @ cosf=1, b sinf=1 /p, and

sind 1
bcos?9 ©
we obtain
M=N+%-ﬁ 2o (14)

which is the same as Eq. (4) with a=0 and Bzyo/g.
From this analysis, it is clear that shifts in the angle 6,
or the unit-cell dimensions, @ and 3, change the values of
p and/or o. Changes in the y intercept, y,, only change
B; that is, according to Sec. III A, they correspond to
shifts from one element of the LI class to another. A
shift in the 2D periodic lattice by pa@ in the x direction
and qg in the y direction for integers p and ¢ leave the 2D
lattice invariant and their projections correspond to um-
klapp transformations of the 1D quasicrystal. Instead of
specifying the projected points as corresponding to the
lower right-hand corner of certain rectangles, we could
have defined a strip extending from the projection line to
a line parallel to it but with y intercept, yo= yo—g (see
Fig. 3); then the lower right-hand corner points that are
projected correspond to exactly that set of points in the

S I
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FIG. 3. Illustration of techniques for obtaining 1D quasicrys-
tal sequences by projection from a 2D lattice. The solid circles
are the points of the quasicrystal sequence. They lie on the pro-
jection line. The open squares and triangles are the grid points
for the grid projection approach (and the GDM). The open cir-
cles are the points which are projected orthogonally in the direct
projection method. The projection strip, which determines the
lattice points that get projected, is the open strip between the
projection line and the parallel dashed line in the figure.
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2D periodic lattice that lie in the strip. For the Fibonacci
sequence, the deflation rules discussed in Sec. IIIB 1 cor-
respond to a transformation of the projection strip to a
wider strip.2#® For this example, where p=0 =7, the 2D
periodic lattice has a square unit cell and the projection
angle with respect to the x axis satisfies tand=1/7. The
projection strip described above has width bcosf=1 (in
the units defined above) and lies just below the projection
line; this includes the lower right-hand vertices that were
projected. A single deflation corresponds to adding a
strip section of width @ sin@=1/r above the projection
line. Pleasants?®® has discussed the generalization of this
deflation to other projection angles in which tané corre-
sponds to an algebraic number. For most cases, the defla-
tion is of the more complicated sort described in Sec.
IIIB1 in which the deflation of an interval of given
length depends upon the neighborhood of intervals that
surround it (a so-called “bounded context” inflation).
Nevertheless, there does exist a self-similarity transforma-
tion of some sort when irrational ratios correspond to
algebraic numbers.

In one dimension the quasicrystal sequence is both a
quasilattice and the 1D analogue of a unit-cell packing.
In higher dimensions though, the quasilattice and the
unit-cell packing are distinct, although one can be con-
sidered the decoration of the other. The diffraction pat-
tern of the quasilattice is simple to compute from the dif-
fraction pattern of the 1D sequence. The diffraction pat-
tern for the 1D sequence described in Eq. (4) can be com-
pute via a straightforward generalization of the method
described in Sec. III A of paper I. The chief advantage of
the direct projection method is that it leads to a simple
and elegant method of computing the diffraction pattern
of the unit-cell packing (rather than the quasilattice) in
higher dimensions. Briefly, the vertices of the unit-cell
packing in two or three dimensions are projected vertices
of a higher-dimensional periodic lattice that lie in a pro-
jection strip about a projection plane. The diffraction pat-
tern of the packing is obtained by convoluting the Fourier
transform of the higher-dimensional lattice with the
Fourier transform of the characteristic function of the
strip (a function whose value is unity inside the strip and
zero outside the strip) and then projecting to two or three
dimensions. This construction makes it more obvious
why the diffraction pattern consists of a dense set of
Bragg peaks; the diffraction pattern of the higher-
dimensional lattice consists of a periodic reciprocal lattice
of Bragg peaks which project into a dense set of Bragg
peaks in the lower dimension. However, the detailed com-
putational method is no simpler than the method required
to compute the diffraction pattern of the quasilattice.

3. Grid projection and generalized dual method

Although the grid projection and generalized dual
method (GDM) are very useful methods for obtaining
unit-cell packings in higher dimensions, in one dimension
they appear unnecessarily complex. Nevertheless, to com-
plete the discussion, we will discuss the 1D construction.

For both the grid projection method and the GDM, the
first step is to create an N-grid. The dual to the N-grid

yields the 1D quasicrystal sequence in either method. A
1D grid consists of a sequence of points which are labeled
by integers according to their ordinal position in the se-
quence. A 1D N-grid, then, consists of N grids along the
same line. (Note that, whereas grid curves in two dimen-
sions or grid surfaces in three dimensions belonging to
different grids must intersect in an N-grid, there is no
analogue intersection condition in one dimension). As-
signed to each grid is an interval length L;, which plays
an important role in the dual construction. To obtain the
1D quasicrystal sequence described by Eq. (4), a 1D 2-grid
is required.

In the grid projection method, the 2-grid is obtained as
a projection from higher dimensions. First, some higher-
dimensional periodic lattice and projection plane is
chosen, say the 2D periodic lattice shown in Fig. 3. Next,
the horizontal and vertical lines in the 2D periodic lattice
are “projected” along the x and y axes, respectively, onto
points along the projection line to form two “grids.” The
two sets of grid points correspond to the intersection of
the lattice lines with the projection line, as shown by the
open squares and open triangles in Fig. 3. The 2-grid is
thus defined by dividing the grid points into two overlap-
ping grids, one set consisting of intersections with vertical
lattice lines (grid 1) and the other consisting of intersec-
tions with horizontal lattice lines (grid 2). Each set of
grid points is indexed by an integer corresponding to its
ordinal position in the grid. Note that it is straightfor-
ward to proceed with the construction of the 2-grid direct-
ly in the 1D space without reference to projections, as is
done in the GDM: two overlapping periodic sequences of
points whose periods are in the ratio o:1 are constructed
on a 1D lattice. Not only is the GDM construction of the
2-grid straightforward, but it can easily be generalized to
quasiperiodic (rather than periodic) 2-grids.

Once the 2-grid is obtained by either method (periodic
or quasiperiodic), an interval length (the analogue of a star
vector in two or three dimensions) is assigned to each
grid: for the example in Fig. 3, interval length
L =1+1/p is assigned to grid 1 and interval length § =1
is assigned to grid 2.

The dual of the 2-grid is obtained as follows. The open
interval between any two grid points (whether or not they
belong to the same grid) is assigned an ordered pair of in-
tegers, (k;,k,), where the interval lies between grid points
ki and k;+1 of grid 1 and between grid points k, and
k,+1 of grid 2. The dual then maps the open interval
into the point

X =k1L +k 2S )

which is a point in the 1D quasicrystal. A study of Fig. 3
reveals that this construction is identical with direct pro-
jection using the wider strip (projecting lower right-hand
vertices of unit cells through which the projection line
passes). The dual takes the place of identifying lower
right-hand corner vertices and projecting. This result car-
ries over a higher dimensions: The grid projection, direc-
tion projection, and GDM for periodic Ngrids produce the
identical structures. As in one dimension, the GDM with
quasiperiodic instead of periodic grids produces quasicrys-
tals that cannot be obtained by projections from periodic
lattices.
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IV. TWO-DIMENSIONAL PENTAGONAL
QUASICRYSTALS

In this section we shall extend the concepts discussed
for 1D quasicrystals to the case of 2D pentagonal quasi-
crystals, both for intrinsic interest and as preparation for
the more subtle case of 3D icosahedral quasicrystals.
Several new features appear that were absent in the 1D
case, due principally to the relation between the orienta-
tional symmetry (which has no analogue in one dimen-
sion) and the quasiperiodicity.

As mentioned above, the pentagonal quasicrystal can be
described in terms of unit cells that repeat quasiperiodi-
cally throughout the structure. Many alternative sets of
unit-cell shapes with different numbers of elements can be
used. The simplest choice is a set of two unit cells con-
sisting of a fat and skinny rhombus (see Fig. 4). The
rhombic unit-cell packings for pentagonal quasicrystals
can be obtained by the 2D analogue of the matching and
deflation rules, grid projections, direct projections, or
GDM. In two dimensions the special Penrose local iso-
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FIG. 4. Two simple decorations of a portion of a Penrose til-
ing. Top: The deflation decoration. The original tiling (heavy
lines) has been decorated as shown at right to form another Pen-
rose tiling (lighter lines). Bottom: A decoration that can be
used to enforce the matching rules. According to the matching
rules, a pair of tiles can join along an edge only if the strip
decorations match across the interface.

morphism (PLI) class can be obtained by any of these
methods.

The GDM produces the widest class of quasicrystal
structures with pentagonal orientational symmetry. The
general approach is to construct a 5-grid and then gen-
erate its dual. The simplest cases to construct and analyze
are periodic pentagrids (periodic, linear 5-grids) and quasi-
periodic pentagrids (quasiperiodic, linear 5-grids) as de-
fined in Sec. II. In either case, the 5-grids are composed
of straight lines oriented normal to one of the five pentag-
onal star vectors,

e, =(cos(2mwn /5), sin(2mn /5)) .

The angle of intersection between any two grids is either
m/5 or 2w /5; the duals to the intersection points corre-
spond to skinny and fat rhombuses, respectively.

A. Local isomorphism

Given two tilings with pentagonal orientational symme-
try, the same unit-cell shapes, and the same quasiperiodi-
city, several relations between them are possible. One
may simply be a pure translation of the other, in which
case we say the two are equivalent. Alternatively, the two
may be completely different on all scales, containing dif-
ferent local configurations of cells. Such tilings are gen-
erally easy to distinguish visually. (See Fig. 1.) It is also
possible for two tilings to differ in their global structure,
but to be indistinguishable on the basis of any finite re-
gions they contain, i.e., any finite region in either tiling
exists somewhere in the other. Two tilings related in this
way are said to be locally isomorphic. The precise defini-
tion of local ismorphism in two dimensions is as follows.

Definition: Two tilings are locally isomorphic if and
only if given any point P in either tiling and any finite
distance d, there exists a pure translation of the other til-
ing that causes the two to coincide everywhere in a circle
of diameter d about P.

Definition: Two N-grids are locally isomorphic if and
only if their dual tilings are locally isomorphic.

Note that this definition is somewhat more restrictive
than that used in paper I in that two tilings that are relat-
ed by a rotation or inversion may not be locally isomorph-
ic. This more restrictive definition will simplify the dis-
cussion in Secs. IV and V.2 This restriction does not af-
fect our discussion because the PLI class tilings we will
study are locally isomorphic (under the more restrictive
definition) to their inversions. Note also that two tilings
are not locally isomorphic if there exists a single finite re-
gion of one that is not found in the other. Two tilings
that are both locally isomorphic to a third tiling are local-
ly isomorphic to one another. Thus, the set of all tilings
can be divided into local isomorphism (LI) classes, where
two tilings in the same LI class if an only if they are lo-
cally isomorphic.

Definition: Two N-grids are topologically equivalent if
the grid curves of one N-grid can be continuously distort-
ed to form the other N-grid without any intersection
crossing any curve.
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The duals of two two topologically equivalent N-grids are
identical up to translations and rotations. Given a quasi-
crystal tiling, we can form its skeleton which is both an
N-grid and a quasilattice. The dual of the skeleton is the
tiling itself. In practice, however, it is difficult to form
the skeletons or tilings directly, and we must content our-
selves with the study of a subset of skeletons that are to-
pologically equivalent to linear N-grids. These linear N-
grids can be generated easily and their duals taken to form
quasicrystal tilings.

B. Grid projections, direct projections
and duals of periodic pentagrids

A grid projection or direct projection from a five-
dimensional periodic hypercubic lattice to two dimen-
sions, and the dual of a periodic pentagrid are different
techniques for obtaining exactly the same pentagonal
quasicrystal packings of rhombic unit cells. The fact that
the original Penrose tilings can all be obtained by duals to
special periodic pentagrids suggests the possibility of ob-
taining the same tilings by projections.’ In this section we
will discuss some general properties of periodic pentagrids
and their duals. In a later subsection, we will specialize to
the PLI class.

Unlike their analogues in one dimension, the projection
techniques generate an infinite number of LI classes, al-
though still only a small subset of the tilings generated by
the GDM. It is equivalent to analyze the LI classes of the
tilings or of the pentagrids whose duals generate the til-
ings. (Two periodic pentagrids are locally isomorphic if
and only if their dual tilings are locally isomorphic.) Re-
call from Sec. II, that a periodic pentagrid can be desig-
nated by its five free (grid shift) parameters {y,}. There
is a simple condition on the {y,} for locally isomorphic
pentagrids:

Theorem 4.1. Two pentagrids, {y,} and {y,}, are lo-
cally isomorphic if and only if

4 4
S Ya— 3 ¥n=m, mEL. (15)
n=0

n=0

A proof of this theorem is given in Appendix A.

We thus have a continuum of tiling classes generated by
pentagrids, with each class characterized by the fractional
part of 3% _ v,. de Bruijn has shown that the special
choice, 3, _,7» =0, corresponds to the set of pentagrids
whose duals correspond to the PLI class. These are pre-
cisely the tilings which are obtained by Penrose using the
matching and deflation rule approach. We will discuss
the special properties of these pentagrids and the tilings
shortly. In general, though, ¥ 7,0 and the tilings that
are generated do not obey the Penrose matching rules.

To see that the tilings generated from periodic pen-
tagrids always have quasiperiodic translational order we
examine a single line in any grid, say grid O, and its inter-
sections with the other four grids; see Fig. 5. [We number
the grids, n =0,1,...,4, where the nth grid consists of
lines normal to e,=(cos(27n/5),sin(2wn/5)). We
choose the periodic interval between grid lines to equal
unity.] Grids 1 and 4 each intersect grid O with intersec-
tion angle 27/5 (we will call these type I intersections)

and the intersection points of each are spaced periodically
along grid O with period csc(27/5). The dual of a type I
intersection is a fat rhombus whose orientation is different
for grid 1 and grid 4. Note that along grid O the intersec-
tions with grid 1 alternate with those of grid 4. Grids 2
and 3 intersect grid O with intersection angle 7/5 (type II
intersections) and the intersection points are spaced
periodically along grid O with period csc(7/5). The dual
of a type II intersection is a skinny rhombus with two
possible orientations. Since csc(m/5)/csc(27/S)=r is ir-
rational the sequence of type I and II intersections along
the grid O line is quasiperiodic. This means, of course,
that the sequence of rhombic cells dual to these intersec-
tions is quasiperiodic. Since the widths of the different
types of cells are different, the y coordinates [recall
€y=(1,0)] of their vertices also form a quasiperiodic se-
quence.

This analysis brings to light some other features com-
mon to all duals of periodic pentagrids which are not
necessarily true for quasiperiodic pentagrids. The fact
that the grid 1 and 4 (or grid 2 and 3) intersections with
grid 0 must alternate means that two consecutive intersec-
tions are never completely identical. It is therefore impos-
sible for adjacent cells in the dual tiling to have both the
same shape and the same orientation. Furthermore, type
II intersections are 7 times as dense along any line in the
N-grid as type I intersections. This implies that the ratio

FIG. 5. Illustration of the GDM applied to a periodic pen-
tagrid. Attention is focused on a single (vertical) line belonging
to grid 0. The tiles marked on the right are dual to their simi-
larly marked counterparts in the pentagrid on the left. Circles
are used for type I intersections and squares for type II (see Sec.
IVB). The y coordinates of the vertices of the marked tiles
form a quasiperiodic sequence.
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of the number of fat tiles to skinny tiles in the dual of any
periodic pentagrid is 7:1.

A pentagrid (or quasiperiodic pentagrid) in which three
or more grid lines intersect at a point is said to be singu-
lar® For periodic grids, singular pentagrids represent a
degeneracy of two or more tilings. To obtain the indivi-
dual tilings, the singularity must be resolved in all possible
ways by shifting the grids (the y,’s) infinitesimally with
respect to one another in all possible directions keeping
>, Va fixed. If three lines intersect in a single point, for
example, one of them can be shifted an infinitesimal
amount in either of two directions to yield two different
triangular configurations of intersections. Infinitesimal
shifts in the other two lines do not result in any more to-
pologically distinct configurations of intersections. The
duals of the two configurations correspond to different til-
ings. We therefore say that a periodic pentagrid contain-
ing one threefold singularity yields two tilings.

For periodic pentagrids the existence of a single three-
fold singularity implies the existence of an infinite num-
ber of them, all collinear. A shift that resolves any one of
these, however, determines a unique resolution of all of
them, so that the pentagrid still gives rise to only two dis-
tinct tilings. For our present purposes the singular
periodic pentagrids are of no special interest. Singular
quasiperiodic hexagrids will prove to be very interesting
for the 3D icosahedral case, though.

C. Duals of quasiperiodic pentagrids

For reasons that will become clearer when we discuss
3D icosahedral quasicrystal packings, we wish to discuss
the LI classification of quasiperiodic pentagrids in addi-
tion to periodic pentagrids. The great variety of possible
quasiperiodic grids makes it difficult to obtain a complete
classification of quasiperiodic pentagrids and their duals.
We will restrict ourselves almost exclusively to the case of
quasiperiodic pentagrids that are composed of grids based
on the Fibonacci sequence with two spacings, L and S, in
the ratio 7:1. These are the Fibonacci pentagrids {a,,8,}
with p=o=7. These quasiperiodic pentagrids are not
only linear 5-grids, but the set of grid intersection points
also satisfies the criteria for a quasilattice. In particular,
there is a minimum distance, r >0, between intersection
points. As we shall see, for special choices of the free pa-
rameters, the Fibonacci pentagrid and the Ammann
quasilattice (see paper I and below) are identical.

In Fig. 1, we exhibit characteristic portions of a Penrose
tiling, a tiling dual to a Fibonacci pentagrid, and a tiling
dual to a non-Fibonacci pentagrid. The Penrose tiling can
be obtained as a dual to a periodic or a Fibonacci pen-
tagrid for special choices of parameters. Figure 1(b) is an
example which can be obtained via Fibonacci pentagrids
but not via periodic pentagrids. From the figure, it is
clear that the various tilings belong to different LI classes.
Certain configurations of tiles appear in each that do not
appear in the others. Note that the dual to the Fibonacci
pentagrid shown in Fig. 1(b) does contain pairs of adja-
cent rhombuses of the same type and orientation and that
the dual to the non-Fibonacci pentagrid contains longer
chains of this type.

As with periodic pentagrids, Fibonacci pentagrids can
be subdivided into LI classes. It is useful to further subdi-
vide them into local congruence classes:

Definition: Two Fibonacci pentagrids are locally
congruent if and only if as quasilattices they are locally
isomorphic; that is, the pentagrids (not just the dual til-
ings) can be made to coincide exactly out to arbitrarily
large finite distances about any point in either pentagrid.

The fact that a Fibonacci pentagrid has a minimum
separation between intersection points means that a small
shift ( <<r) of a single grid does not change the topology
of intersections and so the original and shifted pentagrids
are locally isomorphic. However, the small shift will
change the shapes of the open regions between grid lines.
Thus, the shifted pentagrid is not locally congruent to the
original.

Before stating the local congruence theorem for Fi-
bonacci pentagrids, it is useful to define two types of
equivalence transformations of the a,’s and B,’s. These
transformations are extensions to two dimensions of the
transformations discussed for 1D quasicrystals (see Sec.
I10).

(1) The umklapp transformation:

1 1
Qp—>0y +Pn+ ;qm Bn—Bn—qn + :Pn ’ (16)

where p, and g, are integers. Under such a transforma-
tion we find

N

1
Xy —N +a+pa+= {—+B+ip,,'
T T T

—>Xn(N +p) - (17)

This transformation merely re-indexes the lines in each
grid. We also will use the term “umklapp” as a verb so
that we can speak of umklapping a grid by a number of
the form p +q /7 (for p,g€ Z ) as a transformation be-
tween (a+p +q/7,B) and (a,B—q +p/7); this transfor-
mation leaves the structure completely unchanged.

(2) The B translation:

ﬁn —’Bn +z-€,)
where

m1+m2/1' m3+m4/7'
2= | cos(2n/5)  sinzn/s) P ™E€2 18

and (3n) means mods(3n). This transformation is
equivalent to an umklapp followed by a pure translation.
(The proof of this is given in Appendix B.) Note that al-
though we have restricted z to a special set of vectors, this
set is dense in the plane (the m’s are all independent).

These two types of transformation of a Fibonacci pen-
tagrid (as well as pure translations) yield pentagrids that
are equivalent to the original. The criteria for local



34 QUASICRYSTALS. II. UNIT-CELL CONFIGURATIONS 629

congruence are, however, a bit weaker than for
equivalence.
Theorem 4.2. Two Fibonacci pentagrids {a,,B,} and

{84,7n ] are composed of grids with directions
e, =(cos(2wn /5), sin(27n /5))

and line positions given by

1N
xan=N +an+: 7+ﬁn
and
, 1| N
an=N+8n+: —T—+7n

{an,Bn} is locally congruent to {8,,v,} if and only if
there exist integers p,, g, and vectors u,v (not necessarily
vectors corresponding to S translations) such that

1
Aa,=a,—8,=ue,+p,+ :qn ’
(19)

1
ABr=Br—Yn =V'€(3p)—qnt+ _T_pn .

Proof: By successively applying B translations, um-
klapps and pure translations to {8,,7,} we can make Aa,
zero and Apf, arbitrarily close to zero simultaneously.
First we apply a B translation to {§,,y,} with the vector
z chosen as close as desired to v. In this way we can
come arbitrarily close to eliminating the v-e(;,) term
from AB,. Next we umklapp each grid in {§,,7,]} to el-
iminate all of the p,’s and g,’s from Aa, and AB,. Fi-
nally, we can make Aa, zero by placing the origin for
{84,7x] at the tip of u. We denote the new values of 3,
and y, by 8, and y,. {6,,7,}] is equivalent (not just lo-
cally isomorphic) to {8,,7,].

Since a, =8, the N =0 lines of {a,,B,} and {6,,7,}
coincide exactly. Now the difference between 8, and y;,
affects only those lines in the quasilattice that correspond
to an N for which N/r+B, and N /7+7v, have different
integer parts. This can be made to occur only for arbi-
trarily large values of N since ¥, can be made arbitrarily
close to B, for all n simultaneously. Thus each grid of
{8n,Yn ]} (and, therefore, {8,,7,}) can be made to coincide
exactly with its partner in {a,,,} out to arbitrarily large
distances about the N =0 line. Since by umklapping we
can arrange for the N =0 lines to be anywhere in {a,,B,}
and since the same proof can be repeated with the roles of
{a,,B,} and {8,,y,} interchanged, {§,,v,} is locally
congruent to {a,,B,].

We take it as self-evident that no transformations of the
a’s other than umklapps and pure translations are
equivalence transformations. It is also evident from the
proof in Appendix B that no transformations of the B’s
other than umklapps and S translations are equivalent
transformations. The conditions of Egs. (19) are thus
necessary for two quasilattices to be locally congruent.

We will show in the next subsections that there exists a
special subset (special choices of {a,,B,}) of Fibonacci
pentagrids in the PLI class, called Ammann quasilattices,
which can be obtained directly from the tilings via a sim-

ple decoration of each tile shape. As a result, since a Pen-
rose tiling and its deflation are locally isomorphic (that is,
the tilings can be made to coincide out to arbitrarily large
finite distances), the Ammann quasilattice which
decorates the tiling and its “deflation” must share this
property. That is, the Ammann quasilattices must be lo-
cally congruent to their deflations (the formal definition
of the deflation of a pentagrid is given in Sec. IVB). The
other Fibonacci pentagrids in the PLI class are trivially
related to the Ammann quasilattices by small shifts ( <<r)
of the grids. We will make use of this deflation property
in determining the {a,,B,} appropriate to an Ammann
quasilattice. Once we have identified one Fibonacci pen-
tagrid in the PLI class and the dual’tiling has been con-
structed, all of the tilings locally isomorphic to the dual
can be obtained by first making a local congruence
transformation [Egs. (19)] on {a,,,} and then taking the
dual. Thus, to identify the entire PLI class of tilings it is
sufficient to determine the values of a, and B, corre-
sponding to any single Ammann quasilattice. The PLI
class tiling is then obtained by taking the dual of the Am-
mann quasilattice.

We show in subsequent sections that the PLI class can
be generated by the Fibonacci pentagrids (Ammann quasi-
lattices) given by

67—1

—2
a,= Ar12) Bn= for all n . (20)

T+2

The fact that the PLI class can be generated as a dual to
either a periodic pentagrid or a Fibonacci pentagrid is a
coincidence. For the particular choice of parameters ap-
propriate to the PLI class, the two pentagrids happen to
be topologically equivalent. This topological equivalence
does not occur for the PLI class in the 3D icosahedral
packings.

Reasoning quite similar to that used for the periodic
pentagrids reveals that duals of Fibonacci pentagrids have
a ratio of fat to skinny rhombuses equal to 7:1. In con-
trast to the duals of periodic pentagrids, the duals of some
Fibonacci pentagrids contain adjacent rhombuses of the
same type and orientation. For the Fibonacci pentagrid,
intersections of the same type can succeed each other
along a given grid line because there are two different
spacing lengths within each grid. Since the ratio of spac-
ings is less than 2:1, however, it is impossible to have
three consecutive intersections of the same type and thus
no dual tiling contains a string of more than two adjacent
rhombuses of the same type and orientation. Of course by
choosing p small and o large, we can arrange to have du-
als of more general quasiperiodic pentagrids with arbi-
trarily long chains of this type. (See Fig. 1.)

This simple analysis clearly demonstrates, then, that the
set of duals to quasiperiodic pentagrids, and Fibonacci
pentagrids in particular, contain tilings that cannot be
realized as duals to periodic pentagrids. Also, the sets of
duals to quasiperiodic pentagrids and periodic pentagrids
have a nonempty intersection since both contain the PLI
class. At the time of this writing we have not determined
the full extent to which the two sets overlap.
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D. Penrose tilings: The 2D pentagonal PLI class

1. The special properties of Penrose tilings

Of all the rhombic unit cell structures that can be gen-
erated as duals to pentagrids or pentagonal quasilattices,
the original Penrose tilings—which comprise the pentago-
nal PLI class—are surely the most intriguing. They have
several elegant properties that the elements of other
classes do not share. The three most important properties
of the PLI class (PP1—PP3) are the following.

PP1: There exist a set of simple local matching rules
for the tiles that force a tiling in the PLI class.

PP2: There exist simple inflation and deflation rules
(self-similarity transformations).

PP3: There exists a simple decoration of the tiles in a
Penrose tiling which forms a linear, quasiperiodic (Fi-
bonacci) pentagrid (which we have termed an Ammann
quasilattice).

These properties are all interrelated, the key being PP3.
In general, a decoration is any pattern obtained by a rule
for marking the tiles in a tesselation. A simple decoration
of a tiling is a pattern formed by marking the tiles such
that all tiles of the same type are marked in exactly the
same way. A context dependent decoration of a tiling is a
pattern formed by marking tiles such that the marking de-
pends both on the tile type and on the local configuration
of tiles (within some finite radius) about the tile position
in the tesselation.

For PP1 there exist rules that constrain the way two
tiles can adjoin edge on edge (and vertex to vertex) such
that the only tilings that fill the plane and that are con-
sistent with the rules are quasicrystal tilings in the PLI
class. These matching rules can be enforced by introduc-
ing a set of bumps and nicks on every fat tile and a set on
every skinny tile (the same bumps and nicks appear on
each tile of a given type). Alternatively, the matching
rules can be enforced simply by decorating the tiles with
stripes, say, and requiring the stripes tp match along the
edges of adjacent tiles. (See Fig. 4.)

We say the rules are simple because each fat tile has the
same matching rule and each skinny tile has the same
matching rule. (One can imagine context dependent
matching rules in which there are two or more different
fat and/or skinny tiles with different matching rules.)

There are an infinite variety of tilings consistent with
the matching rules corresponding to the different elements
of the PLI class. The matching rules are such that it is
possible to begin to construct a tiling consistent with the
matching rules at each stage, but then discover that the
tiling cannot be completed. That is, the rules are only lo-
cal and do not guarantee a plane-filling tiling. What is
guaranteed is that it is possible to construct a plane-filling
tiling and that such a tiling must be a Penrose tiling.
Changing a tiling that cannot be completed into one that
can be may require the rearrangement of only a few tiles,
but it may be necessary to rearrange arbitrarily large por-
tions of the tiling.

The possibility of forcing a quasicrystal unit cell struc-

ture with local matching rules may be an important factor
in the growth of some quasicrystals. A possible scenario
for some atomic systems is that atomic clusters form
which can pack together only in special ways, correspond-
ing to a physical manifestation of the matching rules. In
Fig. 6, we illustrate an example of an “atomic decoration”
of the Penrose tiling. Each fat rhombus has been decorat-
ed with the same atomic cluster and each skinny rhombus
has been decorated with a different cluster (we have super-
imposed a portion of the original tiling in the corner of
the figure). If the two clusters were forced by local
“bonding” rules, say, an atomic configuration of the type
shown in the figure might be energetically favorable.
Even under these conditions, it is likely that, given only
local matching rules, the structure could not be grown
perfectly.?® Defects would form where clusters could not
fill a region consistent with the matching rules (in the
same way that a tiling built from local matching rules
may not be able to fill the plane). The defects, however,
can be reduced to point defects, according to the theorem
of Conway which states that any untileable region can be
reduced to a small finite area (a decapod).'> Thus, such
defects would not be more costly energetically than a
dislocation, say, and would not suppress quasicrystal
growth. (In three dimensions, the analogous defect can be
reduced to a line defect.)

For PP2 we say that the deflation rule for the PLI class
is simple because it corresponds to a simple decoration of
the tiles. That is, given a Penrose tiling, a decoration ex-
ists with the property that the decoration markings them-
selves form a Penrose tiling consisting of tiles of side

J
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FIG. 6. Example of an atomic decoration of a Penrose tiling
that is in one-to-one correspondence with the matching rules. A
small portion of the tiling has been superimposed so that the
decoration is more readily visible. This picture is meant to con-
vey some idea of the kind of structure that can be produced by
simple decoration. It is not to be taken as a realistic model for a
physical material.
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length 1/7 times the side length of the original tiles. This
decoration is the same for all Penrose tilings and is depict-
ed in Fig. 4. We call the pattern of small tiles the uns-
caled deflation of the original tiling. The deflation of a
tiling (not unscaled) refers to the same pattern, but scaled
up by 7 so that its constituent tiles are the same size as
those in the original.

Two aspects of this deflation procedure are unusual:
Although deflation procedures can be defined for many
tilings, in all other known cases the decoration is context
dependent (different fat tiles might be decorated different-
ly, for example). Also, in the Penrose case the deflation of
a pattern is locally isomorphic to the original.!!"1213

The inverse of deflation is called inflation. An unscaled
inflation consists of tiles with side length 7 times that of
the original tiles. Rules can be formulated for the joining
of tiles to form an inflation, although they are not as sim-
ple as the procedure for deflation. The existence of unam-
biguous inflation and deflation procedures forms the basis
for many of the proofs of the unique properties of Penrose
tilings.

For PP3 there is another simple decoration of a Penrose
tiling that generates a linear, quasiperiodic (Fibonacci)
pentagrid which we have termed an Ammann quasilattice.

Figure 7 depicts the decoration of the Penrose tiling,
with the marking of individual tiles illustrated below.

2
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FIG. 7. Ammann line decoration of a portion of a Penrose
tiling. The tiles have been decorated as shown at bottom to re-
veal the Ammann quasilattice associated with the tiling. The
dual of this Ammann quasilattice is another Penrose tiling that
is precisely the deflation of the one shown in this figure, accord-
ing to the deflation rules shown in Fig. 4.

The proof that the decoration does indeed form a Fi-
bonacci pentagrid makes use of the deflation procedure.
By constructing a small portion of a tiling and using some
simple geometry one can see that the ratio of spacings in
the decoration is 7:1. By deflating a few small portions
and decorating the unscaled deflation in the same way one
can derive a rule for the “deflation” of a decoration. The
result is that the grids formed by the decoration can each
be deflated independently according to the rule

L_L LL
LSy S=5 7

An unscaled deflation of a grid is depicted in Fig. 2. Now
Eq. (21) is precisely the rule that generates a Fibonacci se-
quence of spacings. Since it can be applied in reverse an
infinite number of times (corresponding to inflations of
the tiling), the grids in the decoration must form a Fi-
bonacci pentagrid.

Thus to each Penrose tiling there corresponds an Am-
mann quasilattice and there is a simple deflation pro-
cedure for this quasilattice that yields the Ammann quasi-
lattice of the deflation of the tiling. Since the deflation of
a Penrose tiling is locally isomorphic to the original and
the Ammann quasilattice is obtained by the same decora-
tion in both cases, the deflation of an Ammann quasilattice
must be locally congruent to the original.

A set of matching and deflation rules for the tiles can
be derived directly from the Ammann quasilattice (which
is why we regard it as so fundamental to the PLI class).
The decoration of the tiles in Fig. 7 can be regarded as a
matching rule, the rule being that two tiles are only al-
lowed to match edge on edge if all the decoration lines are
continued linearly across the interface. This decoration
and rule is slightly different from that given in Fig. 4, but
it also forces tilings that fill the plane to be of the PLI
class.

Another remarkable property of the Ammann quasilat-
tice is that it contains the information necessary to con-
struct the deflation rules: The dual of the Ammann quasi-
lattice, now treated as a quasiperiodic pentagrid, is the de-
flation of its associated tiling. To see this one need only
inspect the decorations that yield the Ammann quasilat-
tice and the deflation of a tiling. To each intersection in
the Ammann decoration there corresponds a rhombus of
the appropriate type and orientation in the deflation
decoration.

2D

2. Penrose tilings as duals of Ammann quasilattices

As we have seen, the dual of an Ammann quasilattice,
which is a case of a Fibonnaci pentagrid (see Sec. IV C), is
a Penrose tiling. Our goal in this subsection is to derive
the special choices of {a,,8,} [given in Eq. (20)] that cor-
respond to Ammann quasilattices. A special property
that allows us to identify these quasilattices is that they
are locally congruent to their deflations (see Sec. IV A).
The deflation of a general Fibonacci pentagrid is now de-
fined to be the pentagrid obtained by deflating each of its
five component (Fibonacci) grids according to the defla-
tion rule for a 1D Fibonacci sequence, as shown in Fig. 2.

We denote the deflation of {a,,B,} by {an,Bn}. After
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determining the relations between a) and a, and between
B and B, we can enforce the condition that {a;,B;] be
locally isomorphic to {a,,B,} to single out the Ammann
quasilattices.

The following two theorems show that the set of Fi-
bonacci pentagrids that are locally congruent to their de-
flations is closed under deflation and that such pentagrids
are locally congruent to each other.

Theorem 4.3. [ay,B.} is locally isomorphic to
{an*,Bn"} if {an,B,] is locally isomorphic to {a,,B5}.

Theorem 4.4. If {a,,B,} is locally isomorphic to
{ay,Br}) and {8,,7,]} is locally isomorphic to {8},7n},
then {a,,B,} is locally isomorphic to {§,,v,}.

(The proofs are conceptually trivial, but tedious, and are
given in Appendix C.)

From these theorems we conclude that the set of all Fi-
bonacci pentagrids which are locally congruent to their
deflations can be obtained by first finding one such
{a,,Bn} and then making all possible local congruence
transformations according to Egs. (19). We know that
this set must be precisely the Ammann quasilattices since
we have already shown by other means (see Sec. IV A)
that they are locally congruent to their deflations. All
that remains is to find some specific choice of {a,,8,} in
this set.

The easiest example to find is one of the cases that has
a center of pentagonal point symmetry. Clearly, such a
pattern can be specified by {a,,B,} with a,=a, B,=5,
for all n. We will use Aa and AB for a—a* and B—B*.
The local congruence conditions of Egs. (19) are then
equivalent to the following three (see Appendix D):

5 T
1 1
AB=— {—-—Q+—P , (22)
5 T
and
P +20Q =5k

for some integers P, Q, and k. Furthermore, it is always
possible to umklapp a and B so as to make —2 <P, 0 <2.
These conditions can be satisfied by four (P,Q) pairs only:
(1,2), 2,—1), (—=1,=2), and (—2,1). [Although (0,0) ap-
pears to work, it yields =0, which is of the form k +//r
for some integers k and [; the correct treatment of this
case shows that it is not locally congruent to its deflation
and its dual is not a Penrose tiling.] The values of a and
B that correspond to an allowed ( P,Q) can be found using
the deflation equations, Egs. (10) and (11); the answer for
(1,2) is

67—1 —2
212 M7
The dual to this pentagrid is one of the special Penrose til-
ings with a center of symmetry (which comprise a subset
of measure zero among all possible Penrose tilings). All
other Penrose tilings can be generated by first transform-
ing {a,,B,} according to Egs. (19) and then taking the
dual.

For completeness we mention also that there is a rela-

tionship between the y,’s of the periodic pentagrid and
the a,’s and B,’s of the Fibonacci pentagrid for the spe-
cial case where both duals correspond to the same tiling in
the PLI class. The relation is

ap+(1/7)By— =)
Ya= 1417

Note that a shift of y,, by an integer (where the periodic
grid spacing is unity) leaves the periodic pentagrid and its
dual unchanged; an umklapp (see Sec. III A) leaves the
quasiperiodic pentagrid unchanged and shifts the expres-
sion on the right-hand side by an integer. This relation
was derived by comparing the deflation rule for pen-
tagrids given by de Bruijn’ and the deflation rule for
(@nsBa )

A further word should be said about tilings that do not
belong in the PLI class and the value of studying the PLI
class. It is difficult to distinguish other tilings from those
in the PLI class on the basis of their diffraction proper-
ties; they produce peaks at the same positions, albeit with
some minor variations in intensities (see paper I). We
have argued that they do not have simple matching rules
and so it seems difficult to “design” a physical system
that is forced to conform to one of these cases. For the
case of I-Al-Mn we have no reason to believe that the
quasicrystals belong to the PLI class. Nevertheless they
must belong to some LI class and it is at least useful to
understand the properties that are shared by elements of a
single class since these have physical consequences (such
as invariance of the diffraction pattern and peak intensi-
ties under a LI transformation). At the very least, the
PLI class is of special interest to physicists because it is
possible to make use of the closer relation between the
Penrose tilings and their associated Ammann quasilattices
in computations. The fact that the Ammann quasilattice
is itself a decoration of the inflation of those tilings may
provide us, for example, with a way to specify the posi-
tions of a single type of tile, and therefore may be useful
in associating form factors in diffraction calculations. We
do not know how to do this for an arbitrary GDM tiling.

(23)

V. ICOSAHEDRAL QUASICRYSTALS

In this section we discuss the construction of
icosahedral quasicrystal packings of unit cells and present
the detailed construction of the PLI class of icosahedral
packings. These special packings are characterized by
simple matching and deflation rules and an underlying
quasilattice of quasiperiodically spaced planes analogous
to the 2D Ammann quasilattice. For various reasons, this
construction is more subtle than the 2D analogue.
Nevertheless, it can be approached in an analogous way
and our treatment here relies heavily on the concepts that
have been defined and illustrated for the simpler 1D and
2D cases.

The 3D icosahedral analogue of the 2D rhombic unit
cells are the two rhombohedra shown in Fig. 8. In the
icosahedral packings the different rhombohedra are
packed face to face and vertex to vertex. As in 1D or 2D,
the 3D icosahedral packings can be generated by the
matching and deflation rules, the grid projections, the
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direct projections, or the GDM. For 3D, though, the PLI
class cannot be generated by the grid projection or direct
projection methods (although it may be possible to gen-
eralize these methods to generate the PLI class). The
most straightforward way of describing the construction
of the 3D icosahedral PLI class is via the GDM.
The set of star vectors for the icosahedral vertex model
is
e, =((2/V5) cos(2mn /5), (2/V/5) sin(27n /5),1/V5)

for n=0,1,...,4 and es=(0,0,1). Two types of non-
singular intersections arise in periodic and quasiperiodic
hexagrids based on this star, whose duals are the two
types of rhombohedra shown in Fig. 8. Each face of these
rhombohedra is a rhombus with acute angles
arccos(1/V'5). The prolate rhombohedron has edges
parallel to the triplet of vectors (es,eq,€;) or some triplet
with the same intersection angles. The other, the oblate
one, is based on a triplet of the type (es,eg,e;).

A. Grid projections, direct projections
and the GDM for periodic hexagrids

Packings corresponding to duals of periodic hexagrids
have been discussed already by several authors. They are
precisely the same packings that are generated by the grid
or direct projection techniques from six-dimensional hy-
percubic lattices. The direct projection technique has
proven helpful in certain aspects of the analysis of these
packings (e.g., in computing the densities of various local
unit cell configurations). We wish, however, to emphasize
the following theorem.

Theorem 5.1. All duals to (nonsingular) periodic hex-
agrids are in the same local isomorphism class.

Proof: The proof of this theorem is quite similar to
that of Theorem 4.1 (Appendix A). Consider any two

GD— !

0

FIG. 8. Two types of rhombohedra that arise naturally in
icosahedral quasicrystal packings and the star of vectors chosen
for the analysis of the vertex model. The prolate rhombohedron
(left) is based on a triplet of the form (es,eg,e;), the oblate on a
triplet of the form (es, e, ¢€;).

hexagrids, {y,} and {y,}. Each is formed from two
overlapping incommensurate periodic lattices which we
will designate A, and A, in {y,}, and A} and A} in {y,}.
A, and A are formed by grids in the (es,ey,e;) directions;
A; and A) are formed by grids in the (e,,e;,e4) directions.
Without loss of generality, let the origin, Q, of {y,} be
any lattice point in A;. Let v be the displacement from Q
to any lattice point in A,. The hexagrid {y,} is complete-
ly determined by choosing € and v. (This is slightly dif-
ferent from the 2D case where the pentagrid is formed
from two periodic lattices composed of two grids each
plus an extra grid. To determine the pentagrid, not only
are the analogues of () and v required, but also the rela-
tive position of the extra grid.) Now, we can translate any
lattice point in A] so that it overlaps (1; then A} and A,
will exactly overlap. Because A} and A) are two incom-
mensurate periodic lattices, for any € there exists a lattice
point Q' in A} and a lattice point R in Aj such that their
relative displacement, 2z, has the property that
|z—v| <e. By making € arbitrarily small, and translat-
ing the associated Q' to {2, A is guaranteed to exactly
overlap A; and A; approaches arbitrarily close to A,. As
a result, duals to the hexagrids {y,} and {y,] can be
made to coincide exactly out to any finite distance. Thus,
the hexagrids are locally isomorphic. (In two dimensions,
it is not sufficient for the two pairs of periodic lattices to
coincide to arbitrary accuracy; the relative position of the
extra grid must also coincide. To ensure this, it is neces-
sary that 3, ¥, — 3,, ¥» be an integer.)

Theorem 5.1 suggests that it is important to study
packings generated by techniques other than projection
from hypercubic lattices in order to appreciate the full
range of possible icosahedral quasicrystal structures. The
duals of quasiperiodic hexagrids, for example, can contain
long chains of identical rhombohedra and thus appear
quite different from the projection packings on a local lev-
el. (See Fig. 1 for the 2D analogue.) The different possi-
ble local configurations of unit cells should be considered
when trying to determine the atomic decoration of I-Al-
Mn and related alloys. Furthermore, we shall see that the
icosahedral packings in the PLI class cannot be generated
from periodic hexagrids.

B. Duals of icosahedral quasiperiodic hexagrids

For the remainder of this paper we focus on a subset of
quasiperiodic hexagrids that plays the same role in three
dimensions as the Fibonacci pentagrids in two dim-
ensions—the Fibonacci hexagrids. Our aims are to show
that duals of these can be analyzed using techniques simi-
lar to those introduced for the 2D case and to determine
the PLI class.

A Fibonacci hexagrid is composed of six grids each
having planes defined by the equation

1
x-€,=x,ny=N +(1,,+: .']7‘\:7“*'6,, ’ . (24)

It is denoted by {a,,B,]. As in the 2D pentagonal case,
the Fibonacci hexagrid is also a quasilattice with a
minimum separation between grid intersection points.

The first task is to determine the conditions for local
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congruence of two Fibonacci hexagrids. As in the 2D
case we define locally congruent Fibonacci hexagrids as
ones that can be made to coincide exactly out to arbitrari-
ly large distances about any point in either hexagrid.

Theorem 5.2. Two Fibonacci hexagrids, {a,,8,] and
{8,,7n}, are locally congruent if and only if

1
Aa,=a,—8,=u-e,+p,+ :Qn ,

(25)
1
v-e<3,,)—q,,+:p,,, n=0,1,...,4

ABn EBn_ynz 1
—V€,—(qy +';pn’ n=>5

for some vectors u and v and integers p, and g,.

The proof of this theorem is essentially the same as that
of Theorem 4.2. As in the 2D case, a shift in u can be in-
terpreted as a translation of the quasilattice and a shift in
v can be interpreted as a rearrangement of the sequence of
long and short intervals between grid lines. The duals to
two hexagrids that are locally congruent are packings in
the same LI class. Packings in a continuum of different
LI classes can be obtained by beginning with some choice
of {a,,B,] and then considering all possible shifts Aa,
and A, that do not satisfy the above criteria.

We next would like to determine which one of these
classes contains packings that have the Penrose properties
of Sec. IV A. The strategy, in analogy with the 2D case,
is to identify those Fibonacci hexagrids which are locally
congruent to their deflations—the 3D icosahedral
Ammann quasilattices. (The deflation of a Fibonacci hex-
agrid is the hexagrid obtained by deflating each of its six
component grids according to the deflation rule for a 1D
Fibonacci sequence, as shown in Fig. 2.) The duals to the
Ammann quasilattices are the 3D analogues of the Pen-
rose tilings and the quasilattice can be obtained directly as
a simple decoration of the 3D packing. Theorems 4.3 and
4.4 generalize trivially to three dimensions, so that in or-
der to determine the set of {a,,B,]} corresponding to the
3D Ammann quasilattices, it is sufficient to identify one
example and then consider all possible local congruence
transformations.

A computation quite similar to that found in Appendix
D shows that one element of the PLI class has a,=1/7,
Bp,=—+ for all n. One assumes that an icosahedrally
symmetric solution can be found in which a,=a and
B, =pB for all n, derives conditions on a and B by apply-
ing Egs. (25) to a—a®* and B—B*, and finds that there
exist three solutions corresponding to three distinct pack-
ings with complete icosahedral symmetry. Since the pre-
sentation of the details would be both tedious and some-
what repetitive, we will simply verify the result here.

From Eqgs. (10) and (11) we find that a deflation of

{ap=1/7,Bn=— % } corresponds to
T
Aa,=a,—a,= 5
and (26)

AB,=B,—Bi=—1.

If {a,=1/7, B,=—7] corresponds to an Ammann
quasilattice, {a,,B,] must be locally congruent to
{an,Bn}; thus, Aa,=a,—a, and AB,=pB,—pB, must
satisfy the constraints of Eqs. (19). The first of these can
be satisfied for u=(0,0,57/2):

T 57 1 1
—=— | —= —qg,, n=0,1,...,4
2= |V [Tt =0
and 27
T 57 1
_—— —q,, n=5.
2 2+p,,+1_q,, n

Using V5=27r—1 we find that these can both be satisfied
by p,=-—1, ¢,=0 for n=0,1,...,4 and ps;=-2,
gs= —2. It is a simple matter to check that the second of
Egs. (25) is satisfied by v=(0,0,5/272).

Hexagrids locally congruent to {a,=1/7, B,=—+)
correspond to other Ammann quasilattices and the set of
all hexagrids locally isomorphic to this one constitute the
PLI class. From the 2D case, we know that the cell
shapes, the deflation rules and a set of matching rules can
all be derived from the duals to the Ammann quasilat-
tices. Before this can be done for the 3D case, though,
there is one important subtlety to be dealt with: the 3D
Ammann quasilattices are singular in the extreme; that is,
there are many points at which more than three grid
planes intersect. In fact, anywhere one might have ex-
pected an intersection of three planes whose dual is an ob-
late rhombohedron, additional planes pass through the in-
tersection making it singular.

C. Singularities revisited

In the 2D pentagonal case, singular periodic pentagrids
in the PLI class can be resolved by any small shifts in the
grids (the y,’s) which keep ,, 7, constant and the duals
to the resolved grids are Penrose tilings.” Thus, the singu-
lar periodic pentagrids in the PLI class can be considered
as a degeneracy of two or more PLI class pentagrids. For
the 2D case, the Ammann quasilattice whose dual also
corresponds to the Penrose tilings is not singular.

In the 3D icosahedral vertex model, the PLI class can-
not be generated by duals to periodic hexagrids and the
Ammann quasilattice, as we have shown above, must be
singular. Any transformation of the {a,,B,} of the form
of Egs. (25) translates the quasilattice and/or rearranges
the sequence of long and short intervals in the grid. Such
transformations do not resolve the singularities; at most
they shift the location of the singularities. The only
transformation of {a,,B,} that resolve the singularities do
not correspond to local congruence transformations and,
therefore, result in a new Fibonacci pentagrid that is not in
the PLI class.

The fact that PLI class hexagrids are inherently singu-
lar suggests that we treat the singularities in a different
way than we did for the 2D periodic pentagrids. Rather
than resolve the singularities by shifting grids, we intro-
duce a unit-cell shape for each type intersection in the
hexagrid, where the type of intersection is characterized
by the number of intersecting planes (the order of the
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singularity). The dual to a nonsingular intersection is a
rhombonhedron; in this case, the only nonsingular inter-
sections are duals to prolate rhombohedra. The cell dual
to a singular intersection is a zonohedron with vertices
given by the points dual to the open regions in grid space
that surround the singular intersection. Each zonohedron
is actually a polyhedron that can be constructed from the
two fundamental rhombohedra. In fact, if we were to
resolve the singularity by small shifts in the grids, we
would obtain a packing in which each zonohedron is
resolved into constituent rhombohedra. It appears that
such a resolved structure can be obtained by grid and

direct projections. However, it is the zonohedral packing
and not the rhombohedral one that possesses all the intri-
guing Penrose properties. Thus, for the special case of the
3D icosahedral PLI class, it is actually simpler to describe
the structure in terms of the zonohedra.

Three zonohedral unit cells arise in addition to the pro-
late rhombohedron (see Table I for a precise specification
of the unit cells), corresponding to the following three
types of singularities.

(1) Sixfold: Six planes, one from each grid, meet in a
single point. The resulting dual shape is a rhombic
triacontahedron, a polyhedron with thirty identical rhom-

TABLE 1. Specification of unit-cell shapes for the PLI class packing and their deflations. Upper: The vertices of each zonohed-
ron are listed for the orientation in which they appear in Figs. 11(a)—11(d). The edges of the zonohedron are constructed by joining
each pair of points that differ by a single e,. Lower: The vertices of the deflation decoration of each of the zonohedra. The points
listed are those which lie at the vertices of the deflated cells [the vertices of the shaded polygons in Figs. 11(a)—11(d)]. The edges of
the cells can be constructed by joining all vertices that differ by a single ¢e,. Note that certain points which are both vertices of an
original zonohedron and vertices of a deflated zonohedron appear differently in the two contexts. For example, $¢$00¢ in the defla-
tion of the rhombohedron is the same point as 010001 in the original rhombohedron. Notation: kok k k3ksks= 2: _oKkn€n, Where
the e,’s are defined by Fig. 8.

Unit cells with edge length 1

Rhomb 000000 000001 100000 010000 110000 100001 010001 110001

Dodec. 000000 100000 000010 100010 001000 001010 101000 001001
001011 101001 000011 100001 100011 101011

Icos. 000000 100000 010000 001000 000100 000010 110000 011000
001100 000110 100010 001110 100110 110010 111000 011100
011110 101110 110110 111010 111100 111110

Triac. 000000 100000 010000 001000 000100 000010 110000 011000
001100 000110 100010 110010 111000 011100 001110 100110
110001 011001 001101 000111 100011 110011 111001 011101
001111 100111 011111 101111 110111 111011 111101 111111

Deflations of above cells ¢=1/7, §=—4¢, 6=2¢

Rhomb. 000000 here corresponds to 000000 in above rhombohedron
000000 $00000 0400000 00000¢ $$0000 $0000¢ 04$000¢ 640004
664004 660404 640060

Dodec. 000000 here corresponds to 000010 in above dodecahedron
000000 004000 000004 004006 040000 040004 044000 04¢00¢
040400 0¢¢¢00 040404 044404 940004 040066 $400¢¢ $6600¢
0440¢¢ $46066 664000 044060 $64040 664004 064046 $6606¢
064400 064004

Icos. 000000 here corresponds to %(111111) in above icosahedron
000000 400000 040000 004000 000400 000040 $00000 040000
005000 00030 00000 000005 §0000F 030005 003005 00030F
000055 FH0000  0FF000 00§00 000530 $000F0 § 50005 08 3005
004 404 000¢ ¢ & 000004

Triac. 000000 here corresponds to +(111111) in above triacontahedron
000000 $00000 0460000 004000 000400 0000460 00000¢ $00000
040000 004000 QOOJOQ 000040 00900&:; $0000¢ 040004 0046004
00040¢ 000046 $0000¢ 040004 004004 000406 0000¢ 6 640000
044000 004400 000640 $00040 é §0000 0¢ $000 00¢ $00 0(10&' 40
600040 400400 040040 $0¢000 040400 004040 $00400 040040
408000 040600 004060 $60006 0664004 004404 0008 000G
#0800 04080 04400 040440 08040 §Fo00g  0FF00§ 005 50§
0004 ¢ & $0004 & ¢ $0400 06 040 $0¢ $00 0404 60 $04040
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bic faces. Since no direction has been singled out it is
clear that the triacontrahedron has the full symmetry of a
regular icosahedron or dodecahedron. It can be resolved
into ten prolate and ten oblate rhombohedra in many dif-
ferent ways, but in none of them is the full icosahedral
symmetry preserved.

(2) Fivefold: The dual to a fivefold singularity is a
rhombic icosahedron. There are six ways to make a five-
fold singularity, each obtained by removing a plane in one
of the directions from a sixfold one. The six icosahedra
thus obtained are clearly just different rotations of the
same shape. The icosahedron has a pentagonal axial sym-
metry about the direction of the “missing” grid. It can be
resolved into five prolate and five oblate rhombohedra.

(3) Fourfold: The dual of a fourfold singularity is a
rhombic dodecahedron. There are fifteen possible orienta-
tions of the dodecahedron, corresponding to the fifteen
different ways in which two planes can be removed from
a sixfold intersection. (To see that the same shape is al-
ways obtained, consider the removal of a single plane
from a fivefold intersection. The axial symmetry of the
fivefold means that the same configuration is left no
matter which plane is removed.) The dodecahedron can
be resolved into two prolate and two oblate rhombohedra.

We note that the zonohedral interpretation of singulari-
ties could also be used for singular periodic hexagrids,
rather than resolving the singularities into rhombohedra
by shifting grids.?’” However, singularities can only ap-
pear in a trivial way for periodic hexagrids. For example,
a periodic hexagrid can have at most one sixfold singulari-
ty and all sixfold singular hexagrids are equivalent. (The
constraint on the y,’s necessary for six grid planes to in-
tersect at a single point is sufficient to determine the
whole hexagrid, up to a translation.) Furthermore, the
density of singular intersections in any hexagrid must be
zero because of the incommensurability of the periodic
sublattices.

D. The 3D Penrose local isomorphism class

The packings dual to the Fibonacci hexagrids locally
isomorphic to {a, =1/, B,=—7]} share all of the re-
markable properties of the 2D Penrose tilings. A section
of a packing in the PLI class is displayed in Fig. 9. The
three layers pictured in the figure overlay one another to
form a thick slice. The twenty rhombohedra indicated in
the figure, for example, actually fit together to form an
icosahedrally symmetric star. All twenty of them have a
point in common (the center of the star). We note a few
characteristics of the structure that are recognizable upon
inspection of several such pictures or simple analysis of
the PLI class quasilattices.

(i) As noted earlier, there are no oblate rhombohedra in
the packings in the PLI class. Four types of unit cell ap-
pear; the triacontahedron, the icosahedron, the dodecahed-
ron, and the prolate rhombohedron, with volumes in the
ratios 107:57:27:1.

(ii) There are local clusters of unit cells that have com-
plete icosahedral point symmetry. The most obvious are
the triacontahedron itself and the “star” of twenty rhom-

bohedra arranged to form a stellated icosahedron. There
are three complete packings with a (single) center of
icosahedral point symmetry. One of these has a triacon-
tahedron at its center, the next shell being composed of
thirty dodecahedra. The other two have a star at their
centers, one having twelve icosahedra as the next shell, the
other having twelve triacontrahedra.

(iii) There is a homogeneity about the packings reminis-
cent of the Penrose tilings. Given any finite region, there
are others identical to it relatively close by.

The key to understanding these properties, as well as the
matching and deflation rules, is the decoration of the unit
cells that produces the 3D Ammann quasilattice generat-
ed by grid planes that we will term Ammann planes. Be-
cause the dual to the Ammann quasilattice is the zo-
nohedral tiling, and because the deflation of the Ammann
quasilattice is locally congruent to the original, the Am-
mann planes represent a simple decoration of the zo-
nohedral unit cells in exactly the same sense that the Am-

FIG. 9. Thick slice of an icosahedral packing in the PLI
class. Three layers of cells are depicted which overlay each oth-
er to form the slice. (The unit cells have been drawn as wire
frames.) In the 3D packing, a single point is shared by all twen-
ty of the rhombohedra that are indicated by arrows (five in the
top frame, ten in the middle, and five in the bottom). The cen-
tral triacontahedron in the top frame is surrounded by thirty,
dodecahedra, ten of which are visible in the top frame, five in
the middle, and five in the bottom.
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mann lines are a decoration of the 2D Penrose tiles. Just
as in the 2D case, the deflation of the 3D zonohedral cells
can be determined by taking the dual of the Ammann
plane decoration of the cells. A set of matching rules for
the zonohedral cells consists of decorating the cells with
Ammann planes and then demanding that two cells match

face to face if and only if the planes that decorate the cells
are continued (along the same plane) across the interface.
The detailed method by which we obtained the positions
of the planes in the zonohedra and the correct deflation of
each cell is difficult to explain without access to some 3D
models. We will simply present the results, which can

FIG. 10. Ammann plane decoration of the unit cells of the PLI class packing. A precise specification of the locations of these
planes is given in Table II. Parallel planes are shaded the same way. The zonohedra and Ammann planes are shown exactly as they
would appear to the eye if the faces of the zonohedra were transparent and the Ammann planes were opaque. In (b), dashed lines in-
dicate edges of the dodecahedron that are seen through transparent faces. A smaller version of each cell is also shown with matching
rules and shadings that facilitate comparison with Figs. 11 and 13. (a) The rhombohedron. Its decoration has trigonal symmetry
about the long diagonal of the rhombohedron. (b) The dodecahedron. This decoration has two planes of reflection symmetry. One of
these reflection planes is nearly perpendicular to the page and contains the long diagonal of the “front” face of the dodecahedron.
The other is parallel to the front face and contains the long diagonal of the “top” face (the long edge of the Ammann plane shaded
with a square grid). Note that the dodecahedron itself has a third mirror plane, but this symmetry is not respected by the Ammann
plane decoration. (c) The icosahedron. This decoration has pentagonal symmetry about the axis of the icosahedron. On the side
which is hidden from view is another plane (parallel to the one shaded with double lines) which is intersected by planes forming a star
exactly like those found on each plane decorating the triacontahedron in (d). (d) The triacontahedron. The planes of this decoration
join to form a perfect great icosahedron.
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TABLE II. Specification of the Ammann plane decoration of the unit cells of the PLI class packing.
Each Ammann plane that passes through a given cell intersects at least two vertices of that cell. Each
Ammann plane is specified by the e, that is orthogonal to the plane and a list of the unit cell vertices
that the plane intersects. When two parallel Ammann planes (i.e., associated with the same e,) pass
through the same cell a set of unit cell vertices is shown on two separate lines for each plane and the
spacing between them (L or S) is noted. The orientation of each cell with respect to the e,’s is the

same as in Figs. 11(a)—11(d).

Shape Normal Points in plane® Spacing
Rhomb. es 100000 010000
& 010000 000001
e 100000 000001
e, 110001 010000 000001
e 110001 100000 010000
& 110001 100000 000001
Dodec. es 100010 001010 101000
€ 000000 001010 001001 L
100010 100001 101011
e 000000 001010 000011 100010 S
001001 101011 101000 100001
e; 000000 100001 000011
e; 001001 101011 001010 000011 S
000000 100010 100001 101000
€4 000000 101000 001001 L
100010 000011 101011
Icos. es 110000 011000 001100 000110 100010 S
111100 111010 110110 101110 011110
€ 110000 100010 110110 111010 L
000000 011000 000110 011110
e 110000 011000 111010 111100 L
000000 001100 100010 101110
e; 011000 001100 111100 011110 L
000000 000110 110000 110110
e; 001100 000110 011110 101110 L
000000 100010 011000 111010
e 000110 100010 101110 110110 L
000000 110000 001100 111100
Triac.’ es 110000 011000 001100 000110 100010 L
111001 011101 001111 100111 110011

2 Notation: kok Kk k3;ksks= 2: _oknen, where the e,’s are defined by Fig. 8.
°Plus an equivalent pair of planes in each of the other five directions.

then be checked by overlaying an Ammann quasilattice
and its dual. The conceptual problem is the determination
of the {a,,B,} for the PLI class, which has already been
solved analytically.

The Ammann plane decoration of the four cells is illus-
trated in Figs. 10(a)—10(d) and a precise definition of each
plane is given in Table II. Each line of Table II corre-
sponds to a different plane in the decoration. We have
listed all of the zonohedron’s vertices through which the
plane passes and the e, normal to the plane. The vertices
of the zonohedra are specified (as in Table I) by coeffi-
cients of the e,’s. When two parellel planes from the
same grid pass through a single zonohedron they are listed
as a pair and the spacing between them noted. Only one

orientation of each zonohedron is explicitly described
since the same decoration applies to all unit cells of the
same shape, i.e., the Ammann planes constitute a simple
decoration.

All of the singular intersections in the Ammann plane
quasilattice occur at vertices of unit cells and all the inter-
sections dual to rhombohedra (nonsingular intersections
of three planes) occur in the interiors of cells. The spac-
ings between parallel planes are, of course, either L or S,
where L:S =7:1. For example, the center of the triacon-
tahedron lies at the midpoint of an L spacing between
each of the six grids and the center of the icosahedron lies
in an § spacing along its axial direction. The order of the
singularities for Ammann plane intersections at the vertex
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of a unit cell depends, in principle, on the cells that adjoin
it since their decorations can add other intersection planes
at the vertex and increase the order of the singularity. In
most cases, though, the order of the singularities at the
cell vertices can be determined from the allowed se-
quences of L and S spacings between planes in the various
grids. For instance, in the Ammann plane decoration of
the prolate rhombohedron, three planes intersect one of
the “acute” vertices; see the lower corner in Fig. 10(a).
(An acute vertex is one which lies at the intersection of
three edges, any pair of which intersect at an acute angle.)
Although one may have thought that the order of the

(a) ®

@/@

>
7

)

(L
AN/

singularity at the vertex depends upon the position and
orientation of the Ammann planes in unit cells which ad-
join the rhombohedron, a closer examination of the rhom-
bohedral decoration shows that the acute vertex must al-
ways correspond to a sixfold singularity: There is a non-
singular intersection of three planes along the diagonal
connecting this first acute vertex to the second [at the up-
permost corner of Fig. 10(a)]. The spacing from the
planes to the vertex is L. Since there is no plane parallel
to these that lies in between at spacing S (which would cut
through the rhombohedron), there must be planes parallel
to these which lie at spacing L and intersect the rhom-

(b) (B)

FIG. 11. Deflation decoration of the unit cells of the PLI class packing. Each cell is divided into pieces (labeled A—G) which are
shown in exploded views. The faces of the pieces which become faces of the deflated cells are shaded. The unshaded faces adjoin
other pieces and lie in the interior of the deflated cells. We have attempted to label enough pieces so that all of them can be identified
without cluttering the picture with too many arrows. The precise locations of the vertices of the decoration are given in Table I. The
star of vectors in each figure indicates the orientation of each cell as it is described in the table. (a) The rhombohedron deflates to one
A, three B’s, and one C. (b) The dodecahedron deflates to four A’s, two B’s, four D’s, and two E’s. (c) The icosahedron deflates to
ten A’s, five D’s, five F’s, and one G. (d) The triacontahedron deflates to twenty A’s and twelve G’s.
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bohedron just at the vertex. Thus, the vertex lies at the
intersection of the three planes explicitly shown in the
rhombohedral decoration plus three which are forced to
occur but which appear explicitly only in adjoining unit
cells. An obvious consequence is that the allowed config-
urations of adjoining unit cells is rather constrained.

The deflation of each unit cell can be determined from
the duals to the Ammann planes. Table I gives the exact
positions of the vertices of the deflation decoration and
this decoration is depicted in Fig. 11. The deflation
divides each cell into pieces which can rejoin to form the
four cell shapes in a deflated packing. In the figure, the
subdivision of a cell into the pieces is shown in an explod-
ed view. Figure 12 shows how the pieces can rejoin to
form new (deflated) unit cells. (Only one way to form the
triacontahedron from the pieces is shown even though, in
general, triacontahedra are formed from several different
combinations of pieces C, E, F, and G in a deflated
packing.) A subtlety is that some pieces serve double
roles. These pieces are associated with Ammann plane in-
tersections at the vertices of a cell for which the order of
the singularity and the dual cell shape depend on the ad-
joining unit cells. One of them, B, is sometimes part of a
deflated dodecahedron and sometimes part of an
icosahedron. Another, G, participates in both deflated
triacontahedra and icosahedra. This makes it more diffi-
cult to implement the deflation procedure than it is in the
2D case, but the appropriate identity of these pieces is al-
ways determined by an adjoining cell.

Note that the Ammann plane decoration of the unit
cells does not always have the same symmetry as the unit
cells themselves. For example, the rhombohedron itself is
symmetric end to end, but the Ammann plane decoration
distinguishes one end from the other (see Fig. 10). The
deflation (and matching rule decorations to be discussed
below) have this same property, just as in the 2D Penrose
tiling. Thus, to implement repeated deflations, it is neces-
sary to specify both the shape and orientation of the de-
flated cells. Decorating the cells with either the Ammann
planes or matching rules automatically keeps track of the
orientation (e.g., which end of a deflated rhombohedron is
which), because all these decorations have the same sym-
metry. The orientations of the deflated cells are deter-
mined by the deflation of the Ammann quasilattice that
decorates the original cells. This represents a unique,

FIG. 12. The way in which the pieces of Figs. 11(a)—11(d)
join to form the deflated cells. The deflated rhombohedron is
not shown because it is formed by a single piece A. Only one of
several possible ways to make the triacontrahedron is depicted.

The others involve various combinations of pieces C, E, F, and
G.

deterministic deflation prescription. In terms of Figs. 11
and 12, this prescription corresponds to the following. (1)
The triacontahedron poses no problems because all of its
possible orientations are equivalent. (2) Given the orienta-
tion of the pieces which rejoin to form a once-deflated
dodecahedron or icosahedron, the orientation of the next
deflation decoration of each can be defined. In Fig. 12
the deflated dodecahedron is shown in the orientation that
allows it to be next deflated as shown in Fig. 11. The de-
flated icosahedron of Fig. 12 is further deflated by identi-
fying the vertex shared by the five B pieces with the ver-
tex shared by the five D’s in the deflation decoration of
Fig. 11. (3) The rhombohedron is a bit more complicated.
Let us define the direction of a rhombohedron to be along
the diagonal connecting the two acute vertices and point-
ing in the direction of the acute vertex that lies at the in-
tersection of three Ammann planes in the rhombohedral
Ammann plane decoration. The direction of the undeflat-
ed rhombohedron is towards the upper right hand corner
(along es+e;+e€;) in Fig. 11. The deflated rhombohedra
in Fig. 11 then are all directed outwards from the interior
of the undeflated zonohedral unit cell.

Given these deflation rules, it is possible to obtain an
arbitrarily large packing from repeated deflation of a fi-
nite cluster of unit cells.

Although some pieces (B and G) in the deflation
decoration serve double roles in forming new unit cells,
the deflation rules as specified in Table I and Fig. 11 can
be used to derive the relative numbers of rhombohedral
(r), dodecahedral (d), icosahedral (7), and triacontahedral
() unit cells in the packing:

T T U 6r4+2 3141 6142
~1:0.118:0.106:0.085 . (28)

This computation is left as a challenging exercise for the
interested reader. These analytical results agree with
brute force numerical counts.

Finally, as stated earlier, matching rules can be formu-
lated for the cells such that the only space-filling packings
possible consistent with the rules correspond to packings
in the PLI class. One form of the matching rules is af-
forded by the Ammann planes themselves. If adjacent
cells are required to be placed so that their Ammann
plane decorations join to form continuous planes, the re-
sult must be a packing in the PLI class. It is clear that no
periodic structures can be produced by such a matching
rule because the Ammann planes in each cell are forced
into an icosahedral grid pattern in which there is a
minimum separation between grid intersections—an
icosahedral quasilattice. That the quasilattice is necessari-
ly an Ammann quasilattice can be inferred from the
correspondence between the Ammann plane decoration,
the matching rules and the deflation rules.

Other realizations of these same matching rules can be
generated noting that the Ammann planes distinguish
only three different types of rhombic faces on surfaces of
the unit cells. Any marking on the faces that distin-
guishes them and their orientation in the same way as the
Ammann planes is an equivalent matching rule. We sim-
ply stipulate that two adjacent cells must be joined along
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FIG. 13. Matching rule decoration for the unit cells of the PLI class packing. The cells can be constructed by cutting, folding, and
taping. (Which edges get taped together becomes obvious as the procedure is carried out.) The matching rule that forces a PLI class
packing is simply that adjacent cells are required to join along identical faces with the same orientation.
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faces with identical markings and orientations. In Fig. 13
we illustrate such a decoration. The zonohedra have been
cut along certain edges so that they could be flattened out.
They can be reconstructed by cutting, folding, and taping.
Note that two faces marked with triangles or arrows can
only match one way but two faces marked with the line
segment can match two ways.

The Ammann plane decorations of the zonohedra can
also be viewed as a decoration of the oblate and prolate
rhombohedra that can adjoin to form them. In this case,
the expression of the matching and deflation rules is rath-
er complicated since the Ammann planes correspond to
context dependent decorations of the rhombohedra. That
is, two prolate rhombohedra, say, can be decorated in dif-
ferent ways by the Ammann planes and so have different
rules associated with them. Such context dependent rules
are difficult to state concisely—the “simple” rules for the
zonohedra are difficult enough to express. Although the
rhombohedral unit cells are the most useful for describing
the general 3D icosahedral quasicrystal packing, the zo-
nohedra are the easiest for describing the PLI class tilings.
As unfortunate as this may be, it must be accepted as one
of the necessary subtleties of the 3D icosahedral construc-
tion.

VI. CONCLUSIONS

Two quasicrystals packings with the same orientational
symmetry, quasiperiodicity and unit-cell shapes may
nevertheless correspond to very different arrangements of
the unit cells. The different arrangements can be grouped
into equivalence classes we have termed local isomor-
phism (LI) classes. Different methods of constructing
quasicrystal packings—grid projections, direct projections,
matching and deflation rules, and the GDM-—do not gen-
erate the same spectrum of LI classes. The GDM pack-
ings, though, encompass all those generated by the other
methods (as conventionally defined in the literature) plus
an infinitely greater set.

The Venn diagram in Fig. 14(a) illustrates what we
know thus far about possible quasilattice packings for the
3D icosahedral (vertex) model. The most general class of
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FIG. 14. Venn diagrams summarizing our understanding of
various sets of packings and tilings discussed in the text. The
dashed lines emphasize our incomplete understanding of the set
of packings obtainable by projection from hypercubic 6D and
5D lattices. We have indicated our best guess in each case.

icosahedral packings is obtained via GDM using an arbi-
trary icosahedral 6-grid. The subset that is the simplest to
analyze consists of packings generated from planar hex-
agrids with a periodic or quasiperiodic sequence of spac-
ings between the grid planes. In this paper, the largest set
of packings we have analyzed is the one generated by a
special choice of quasiperiodic hexagrids—Fibonacci
hexagrids—for which there is a Fibonacci sequence of
long and short spacings between grid planes. The duals to
Fibonacci hexagrids include a spectrum of different LI
classes which can be parametrized by {a,,B,} (see Sec.
V). The set of 3D packings analogous to the Penrose til-
ing are also indicated in Fig. 14(a) and form the Penrose
local isomorphism (PLI) class. This class is the one which
can be generated by matching and deflation rules and cor-
responds to a single LI class. This class can also be gen-
erated by the GDM using a special choice of Fibonacci
hexagrids corresponding to Ammann quasilattices. Direct
projections and grid projections from a 6D hypercubic lat-
tice, as well as GDM for a periodic hexagrid, all yield the
same single LI class of packings which is not the PLI
class and which, as far as we know, has no distinctive
properties. We have indicated this set with a dotted boun-
dary because we conjecture that this LI class can also be
obtained as duals to Fibonacci hexagrids, but we have not
proven it. In Fig. 14(b), we show the Venn diagram ap-
propriate to the 2D pentagonal quasicrystals. The only
difference in this case is that the projection techniques
generate a set of tilings in an infinite number of distinct
LI classes, including the PLI class. We have indicated the
set by a dotted line in this case because, although we have
shown that the PLI class can also be generated via the
GDM for Fibonacci pentagrids, we do not know about the
other LI classes. (We conjecture that some but not all of
these can be generated from Fibonacci pentagrids.)

Understanding and distinguishing LI classes has physi-
cal significance, as we argued in paper I. Two packings in
different LI classes have different diffraction peak intensi-
ties and free energies. They should not be regarded as de-
generate states for the purpose of computing the ground-
state degeneracy. Also, determining the atomic decora-
tions of unit cells from diffraction peak intensities is
much more difficult for quasicrystals than crystals since
modulations in intensity between two samples may be due
to variation in atomic decoration or LI class.

We have introduced a formalism that allows us to clas-
sify quasicrystal packings at least for those cases generat-
ed by the GDM for periodic and Fibonacci N-grids. The
method can be extended for other quasiperiodic N-grids
where the quasiperiodicity is given by Eq. (3). However, a
general formalism that includes all possible packings does
not yet exist.

We have used the formalism to find the special PLI
class of quasicrystal packings for the 2D pentagonal and
3D icosahedral case. We note here that the method has
been fully extended for the 2D octagonal case as well as
found to work in all its details.”> We have made some
progress in the case of 2D sevenfold and twelvefold sym-
metry, but we do not yet have a complete construction of
the PLI class for these or any other symmetries. Clearly,
there are a number of open mathematical and, potentially,



physical issues that must be resolved for more general
symmetries.

The PLI packings may have direct physical significance
if the simple matching rules associated with them have
physical manifestations through the interactions of atoms
or atomic clusters, although we have no reason to suggest
that this is the case of I-Al-Mn or related alloys. At the
very least, the PLI packings are useful because we have
the most number of tools—matching rules, deflation
rules, and Ammann quasilattice decorations—with which
to analyze them. For example, although there exists a hy-
drodynamic description of quasicrystal dislocations in
terms of density waves,?® a description in terms of pack-
ings of unit cells has not been given previously. We have
found that the hydrodynamic description, expressed in
terms of spatially varying phases of the density waves, can
be translated to describe dislocations in quasilattices, ex-
pressed in terms of spatially varying {a,,B3,}. Far from
the dislocation core, a structure should appear (nearly)
perfect; for quasilattices this means that regions far from
the dislocation core should be locally congruent to the un-
defected lattice. Finally, to obtain a description of the
dislocated structure in terms of a packing of unit cells, we
use the fact that, for the particular case of the PLI class,
the unit cells can be obtained as a decoration of the Am-
mann quasilattice. By decorating local configurations of

O]

O O TAROT
R R R N AR AN X
A AR AT RS ST

> [N AT AT AN ~ %

BN s B SRS e B 0 Ba% S n D N S N Y
A ORI AN SEATPRY
RS A OIS TR VST AL
w0 ?o!’.’:,'.’-’u‘“"a’(h’!.‘lh’/
I ns A0ty m, Jusl ey u
AR A SO O TN Vo /SaS3us 2o

C)
.’l’.’n‘\ N,

2 Ok () - O oY
o O T S S N A G O
R RN R AR AT SR R
\.V.‘ SO “\‘- OIS .. 2 ."\'.’. R

AT S e O RO A AT RIS ARSI A
AR A O S A SO 7
ST RN AR AN AT AN
LA FOAOASS o' <> H
OO U O X AN
DX VSO AN -
SO, ISORAT AN R en o) mey
55 ’O"o‘" Do Nud e AR ’o"o‘.’o‘&‘k(
i -~

AT
\gB§/ & We o w\ud J0g70 sl ul/ Ny
A ARSI e A e o)
NN NS A KO AR
ARSI NS T AR
R IS AN O PON T )
X R TR KA
(N

a

[T
(/

Q7
PG
(<
\

(%
0

3
L)
s

%S
X [
R

g
%
g

\
O
&
S

OS
RN O OO TR
al o.!"-,:\o""\o‘:o.o/;.o,“ Q".‘:O,: IS
LA A EATUTSAT N A
XS ARCHALTS AL INSAIARY
T RO AT
SEA .0. O.‘ AT ]
XL N H S AT NG,
O RO S A AR
AR IR
USRI

7
)
%

O
]

XY
U
57
."
-
\)
7

‘lll N
=)
[

o

)
s
1)
Z7
\
%
()
)
N

7
U
o
57

3
()

[

A
CORL
2)\en

(2
[ ] l‘.
\”.

'
Xy
Ve
"l

“

L]
=5
58
¥
o,
(A
O
(]

NBRIN

\
f".
4
'
.
'

FIG. 15. Portion of a 2D Penrose tiling containing a single
dislocation. See Ref. 29 for details of the construction. The
dislocation core (represented by the white disk) cannot be filled
with tiles. The tiles are all slightly distorted as a result of the
dislocation, the amount of distortion decreasing with increasing
distance from the core. A construction of the skeleton curves
for the dislocated tiling illustrates that extra “half-curves” are
added along two independent directions. Although most of the
tiles are arranged according to the Penrose matching rules, there
are occasionally (even far from the core) local configurations
that violate the rules. The description in terms of unit cells cor-
responds with the hydrodynamic description of dislocations
given in Ref. 27.
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vertices in the dislocated Ammann quasilattice in the
same way (allowing for small distortions in the rhombic
shapes), we are able to construct the dislocated unit-cell
packing for the PLI class. Figure 15 has been produced
by first generating a dislocated Ammann quasilattice on a
computer and then decorating the quasilattice by hand.
The detailed construction of the dislocated packing will be
described in a later paper.”

ACKNOWLEDGMENTS

We wish to thank D. Levine for extensive help and ad-
vice in the preparation of this manuscript. We also thank
E. Bombieri, J. Conway, V. Elser, C. Henley, S. Kim, T.
Lubensky, S. Ostlund, P. Pleasants, S. Ramaswamy, J.
Taylor, and J. Toner for useful discussions. We were
motivated to construct Fig. 15 following a stimulating
discussion with M. Kleman and Y. Gefen, who are
developing a rather different approach to analyzing topo-
logical defects. We wish to especially thank R. Amado
and P. Chaudhari for their support and advice throughout
this research project. This work was supported in part by
the National Science Foundation Materials Research La-
boratories (NSF-MRL) program under Grant No. DMR-
82-16718, by DOE-EY-76-C-02-3071. J.E.S.S. is support-
ed in part by IBM and P.J.S. is supported in part by the
Alfred P. Sloan Foundation. P.J.S is grateful for the hos-
pitality and financial support from the IBM Watson
Research Laboratory and the Institute for Advanced
Study in Princeton, where much of this research was
completed.

APPENDIX A: PROOF OF THEOREM 4.1

(i) Proof that > y,— > vp=m=>{y,} is locally iso-
morphic to {y,]: We first note that if any y, or y, is
changed by an integer the grid specified by it is unaltered;
its lines are merely re-indexed. We can therefore redefine
the y,’s in such a way as to make m =0. Next note that
once the line with index N =0 is chosen for each of the
grids, the quantity 3 y, is unaffected by the choice of
origin from which the y,’s are measured. (If the origin is
translated by a vector z the change in y, is given by
Ayp,=z-€,. But 3t _ z-e,=2z- 3t _ e, =0.)

Now the entire pentagrid is completely determined once
the positions of a single line in each grid are specified.
Suppose the positions of the N =0 lines in {y,]} are all
specified and that ) v, =c. We will show that for any €
a choice of origin can be made for {y,} (which is
equivalent to a translation by some z) that makes
Yn—Vn <€¥n.

Considered alone, the two grids having directions e,
and e, form a periodic lattice of rhombuses with short di-
agonals oriented in the x direction. In units of the grid
spacing the length of the short diagonal is 2/7 and the
length of the long one is 2/v'3—7. Similarly, the grids
associated with e, and e, form a periodic lattice of rhom-
buses with diagonals of length 27 in the x direction and
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2/V'2+47 in the y direction. These two lattices are clearly
incommensurate with each other in both the x and y
directions. [Note that V2+7/V3—7r=r.] Given any
vector v we can therefore find a pair of points P,; and
Pj4, one on each lattice, such that |Py;—Py—v| <e€/2.

Let v be the displacement from the intersection point of
the N =0 lines of grids 2 and 3 to the intersection point
of the N =0 lines of grids 1 and 4 in {y,}. We can now
locate P,3 and Py, in {y,]}, designate the lines which in-
tersect at these points as N =0 lines, and choose the ori-
gin such that yi=y; and y3=vs  Because
|Py3—Piy—v| <€/2 we have |y3—y,| <€/2 and
| Y3—73| <€/2. Finally, we note that v, and y are fixed
by the condition 3 y,= 3 y,=c which implies
[Yo—7o! <e.

Since ¥, can be made arbitrarily close to y, for all n
and for any choice of origin in {y,], the pattern of inter-
sections around the origins of the two pentagrids can be
made to agree out to arbitrarily large distances. The two
pentagrids therefore yield tilings that coincide exactly in
an arbitrarily large region about the vertex dual to the
open region containing the origin.

(i) Proof that ¥ v, — 3, ¥n=m => {y,]} is not locally
isomorphic to {y,}: It is clear that y,—y, cannot be
made arbitrarily small for all »n simultaneously as this
would imply ¥ y,— 3 ¥, could be made arbitrarily
small. Since the intersections in a periodic pentagrid run
arbitrarily close together it is equally clear that in order
for {v,} and {y,] to be topologically equivalent one must
be able to make ¥, and ¥, arbitrarily close for all n.

In the case of periodic pentagrids it is easy to determine
the criteria that apply when we expand the definition of
local isomorphism to include tilings related by inversions,
as in paper I. The pentagrid (and, therefore, its dual) can
be inverted simply by taking y¥,— —¥,. Then, a more
general definition of LI class that includes inversions is:
{vn}] and {7, ] are in the same LI class if and only if*°

mod; 3 ¥, —7 |= Imodn}_‘,ri.~%

APPENDIX B: PROOF THAT A B TRANSLATION
IS EQUIVALENT TO AN UMKLAPP
FOLLOWED BY A TRANSLATION

Let {a,,B,} and {8,,7,] be related by a 3 translation,
i.e., Aa, =0 and AB, =z-e(3,), where z is of the form

m1+m2/7' m3+m4/7'
cos(27/5) ’ sin(27/5)

We want to show that these AB’s can be umklapped over
to the Aa’s and that the resulting Aa’s are of the form
u-e,.

Using

cos(2m/5)= L, cos(4m/5)= — 1,
2T 2

sin(4w/5)/sin(2m/5) =71,

and the relation 1+7=72, we find

Aﬁo=2m1+2m2+—11_-2m1 ,
AB,:—-Zml—mz—m4+~7l_—(—m1—mz-m3+m4) ,
Aﬂz=m1+m3+%(m2+m4) , (B1)
AB3=m1—-m3+—_lr-(m2—m4),

1
AB4= ——2m1 —my +m4+:(—m1 —m2+m3—m4) .

These can obviously be umklapped to zero (since each
AB, is of the form p +q /7, where p and q are integers)
with the result

Aa0=—2m1+%(2m1+2m2) y
1
Aa1=m1+m2+m3—m4+:(——2m1—m2—m4) ,
Aa2=—m2——m4+%(m1+m3) ’ (BZ)
1
Aa3=——m2+m4+?(ml-—m3) s

Aa4=m1+m2—m3+m4+%(——2m, —my+my) .

It is now straightforward to verify that Aa, =u-e,, where

——m2+m1/‘r —M4+M3/T (B3)
U= T eos(dn/5) 0 sin(4m/5)

which makes it clear that an appropriate translation
brings all the Aa,’s to zero simultaneously.

We note that the form of a B translation is unique. The
steps of the proof can be reversed to show that this form
of the AB,’s is the only one that, when umklapped to
zero, yields a pure translation.

APPENDIX C: PROOFS OF THEOREMS 4.3 AND 4.4

For Theorem 4.3 let Aa,=a,—a;, AB,=B,—Bnr,
Aa, =a,—ay*, and AB,=B,—B,". We want to show
that if there exist u,v,p,,q, such that

1
Aa,=u-e,+p,+ :qn

and (63))]

ABy=V'€(3x)—4n +%p,. ,

then there must exist u’,v’,p,,q, such that
Aa,=u'"e, +p,+ ;l;q,’.

and (C2)
ABp=V"€(3n)—4, +—i—p,’. .

To do this we simply express Aa, and AB, in terms of
Aa, and AB,. Using Eq. (11) (Sec. III B 1) we find
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A =781~ |B3)
T
=TB,,—TAB,,——}1BH . (C3)

But, also from Eq. (11), we have 78, =AB,+7"'|B,.].
Thus,

ABy=— A8+ (B, - (B2 9
Similarly, we can use Eq. (10) twice to get

;___J_ * T 1p* _1__ T
Ady=——ay+ [B,,H—T[ n )

=rhay+ 18, = B3]~ B3+ 18] . (C9)
We now note that |B|=|Br*|=—1 because

|7~!(|x] —x)] =—1 for any x & Z and both are of this
form according to Eq. (11). Thus we have

a8y =—Lag,+La+18.D),
T T

(C6)
Aa;,::'rAa,, +14 ‘_ﬁnJ ’

and Eq. (33) is explicitly verified using u'=mu,
v=—(1/71)v, pr; =pn+qn+1+ lﬁnj: and q;; =Dy.
For Theorem 4.4 let

Aa,, =Q, —a:, AB’I =Bn —B: s

Aan =8n _’6:’ AYn =%n _7: ’ (€7)

AA,=a,—08,, AB,=B,—7, .

We want to show that if there exist u,v,p,,q,,w’,v’,p.,q
such that

1
Aan =U'€, + Py +';Qn ’

1
ABp=V-€(n)—qn+ :Pn ’

1 (C8)
A8, =u"e,+p+—qs
’ ! 1 ’
Ay,=v ‘€(3n)—4qnt+ ;Pn ’
then there must exist s,t,P,,Q, such that
1
AAn =8¢, +Pn + :Qn ’
(C9)

1
AB,=t-€(33)— 0 +;Pn .

To do this we want to express A4, and AB, in terms of
Aa,, AB,, AS,, and Ay,. As we did in the previous
proof, we use

1 T 1 *
7a,,=—-Aa,.+—2'—an]+:an} ,

TBn*-‘ABn+.:TanJ’ I.B:.l:'-l

and similar expressions for §, and {y,} to get

AAd, =108, —Aa,)+7(|Va] —|Bs]) >

) 1 (C10)
Aan:(ABn —Ay,)— ';( lYnJ - anj ).
The theorem can now be explicitly verified using
s=7(u'—u),
t=—1—(v—v’) )
T
(C1n

Pn =Pr'x —Pn +qr:“qn+ “’nJ - lﬂnj ’

and

On=Pn—Pn+ |Val—1Bn] -

APPENDIX D: ISOLATION OF THE AMMANN
QUASILATTICES

Our aim here is to derive a set of values of a, and 3,
(for the 2D case) whose deflation is locally congruent to
the original. We begin by assuming that a symmetric set
is possible, i.e., that at least one such set is of the form
a,=a, B,=p for all n. (If the assumption is incorrect,
we should encounter a contradiction.) This obviously im-
plies Aa,=a,—a,=Aa, AB,=B,—B,=AB for all n.
We can sum over n in Eqgs. (19) (Sec. IVC) then to get a
necessary condition on Aa and AS:

> Aa, =P+%Q ,
" (D1)
S AB=-Q+—P,

where P=3 p, and Q=3 ¢,. Since all the Aa,’s
are equal and all the AB,’s are equal, we have
Aa=-+[P +(1/7)Q] and AB=~[—Q +(1/7)P].

To satisfy the first equation in Egs. (19) it must be pos-
sible to find a vector u and integers p, and g, such that

Aa,=u-e,+p, + jlr‘Qn . (D2)

We first look for a solution in which u=ce;. The zero
component of Eq. (D2) requires

1
c=x |P—5po+(Q —5q0) | .
5 T

Using this value of ¢ in the other components of Eq. (44)
yields
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5qo+2P—Q 1 | 5Po—5g0—P +3Q
—_— = , forn=1,4
n 10 T 10
42 = (D3)
P2 —5po—5¢0+3P+Q | 1 [ —5po+P+20
+— |———— ||, forn=2,3.
10 T 10
I
In order to satisfy these equations, each term in  and
parentheses must equal an integer (corresponding to p, or
q,). For the last term, this implies that P +2Q =5k for AB= « 1 1 P
some integer k. In fact, this condition is sufficient to B=Bn—Bn= 5 —Q+ o

guarantee that a set of integers p, and g, exist which
satisfy Eq. (D3). For example, if we choose po=k and
go=Q, Eq. (D3) implies p;4=k, py3=k—Q, and
d1,4=¢,,3=0, all of which are integers. The second equa-
tion in Eqgs. (19) can be satisfied for the same choice of p,
and g, with v=c'e; where

¢'=—(Q —5q0)+—}_-(P——5p0) .

To see that a different choice for u would not yield any
new possibilities one need only note that the addition to u
of a component perpendicular to e, does not alter the
quantities Aag, (Aa;+Aay), and (Aa,+ Aaj). The condi-
tions on P and Q remain unchanged, although different
values of p; and g, might work.

There are five distinct solutions for (P,Q): (1,2),
(—1,-2), 2,—1), (—=2,1), and (0,0). All others are equal
mods and correspond to umklapping one of these solu-
tions (i.e., a completely equivalent pentagrid). From the
expressions,

Aa=a, —a:=% P+%Q

and the expressions for aj; and B given in Egs. (10) and
(11), we can find the associated values of {a,,B,}. The
solution (0,0) turns out to give 3, =0, which is in the ideal
and therefore must be examined separately. The correct
treatment of this case reveals that it does not deflate to a
locally isomorphic tiling. The other four pairs give four
patterns that transform into one another under repeated
deflation. The values obtained from (1,2) are

67— 1 2
=51y MB=T17-

To complete the logic of the argument we note that we
have justified our initial assumption (that a symmetric
solution for {a,,B,} exists) by exhibiting four explicit ex-
amples.

Note that we have not considered the possibility of a
PLI class tiling in which {a,,,} is not locally isomorph-
ic to its deflation, but is locally isomorphic to a rotation
or an inversion of its deflation.”? We do not consider this
possibility because we already know that the dual, the
Penrose tiling, does not have this property.
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FIG. 10. Ammann plane decoration of the unit cells of the PLI class packing. A precise specification of the locations of these
planes is given in Table II. Parallel planes are shaded the same way. The zonohedra and Ammann planes are shown exactly as they
would appear to the eye if the faces of the zonohedra were transparent and the Ammann planes were opaque. In (b), dashed lines in-
dicate edges of the dodecahedron that are seen through transparent faces. A smaller version of each cell is also shown with matching
rules and shadings that facilitate comparison with Figs. 11 and 13. (a) The rhombohedron. Its decoration has trigonal symmetry
about the long diagonal of the rhombohedron. (b) The dodecahedron. This decoration has two planes of reflection symmetry. One of
these reflection planes is nearly perpendicular to the page and contains the long diagonal of the “front” face of the dodecahedron.
The other is parallel to the front face and contains the long diagonal of the “top” face (the long edge of the Ammann plane shaded
with a square grid). Note that the dodecahedron itself has a third mirror plane, but this symmetry is not respected by the Ammann
plane decoration. (c) The icosahedron. This decoration has pentagonal symmetry about the axis of the icosahedron. On the side
which is hidden from view is another plane (parallel to the one shaded with double lines) which is intersected by planes forming a star
exactly like those found on each plane decorating the triacontahedron in (d). (d) The triacontahedron. The planes of this decoration
join to form a perfect great icosahedron.
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FIG. 11. Deflation decoration of the unit cells of the PLI class packing. Each cell is divided into pieces (labeled A—G) which are
shown in exploded views. The faces of the pieces which become faces of the deflated cells are shaded. The unshaded faces adjoin
other pieces and lie in the interior of the deflated cells. We have attempted to label enough pieces so that all of them can be identified
without cluttering the picture with too many arrows. The precise locations of the vertices of the decoration are given in Table I. The
star of vectors in each figure indicates the orientation of each cell as it is described in the table. (a) The rhombohedron deflates to one
A, three B’s, and one C. (b) The dodecahedron deflates to four A’s, two B’s, four D’s, and two E’s. (c) The icosahedron deflates to
ten A’s, five D’s, five F’s, and one G. (d) The triacontahedron deflates to twenty A’s and twelve G’s.
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FIG. 4. Two simple decorations of a portion of a Penrose til-
ing. Top: The deflation decoration. The original tiling (heavy
lines) has been decorated as shown at right to form another Pen-
rose tiling (lighter lines). Bottom: A decoration that can be
used to enforce the matching rules. According to the matching
rules, a pair of tiles can join along an edge only if the strip
decorations match across the interface.



